Studies of a novel biomimetic radical spirocyclisation

(Note: The full text of this document is currently only available in the PDF Version )

Upendra P. Topiwala, Mark C. Luszniak and Donald A. Whiting


Abstract

The mechanism of the radical spirocyclisation 7→9 has been investigated. It has been shown by isotopic labelling that the biaryl ether oxygen does not emerge as the carbonyl group oxygen in the product, nor does the latter arise by hydrolysis of an intermediate e.g. 33 by added water. The mechanism of Scheme 1 path a is proposed, involving oxygen transfer from an aromatic nitro group to carbon in a cyclohexadienyl radical. Radical decarboxylation of the biarylamine derivative 29 does not lead to spirodienone 9 but diverts instead to the azathiaacetal 30.


References

  1. Y.-P. Chen, R. Liu, H.-Y. Hsu, S. Yamamura, Y. Shizuri and Y. Hirata, Bull. Chem. Soc. Japan, 1977, 50, 1824 CAS; N. Ookawa, T. Ikeya, H. Taguchi and I. Yosioka, Chem. Pharm. Bull., 1981, 29, 123 CAS.
  2. S. P. Green and D. A. Whiting, J. Chem. Soc., Perkin Trans. 1, 1998, 193 RSC.
  3. L. Shide, D. Zhikuei, R. Mayer, G. Rucker, G. Will, A. Kirfel and R. Langen, Planta Medica, 1988, 54, 440 Search PubMed; Z.-H. Ding and S.-D. Luo, Huaxue Xuebao, 1990, 48, 1075 (Chem. Abstr., 1991, 114, 182 040r) CAS.
  4. J.-S. Liu, M.-F. Huang and H.-X. Zhou, Can. J. Chem., 1991, 69, 1403 CAS; J.-S. Liu and M.-F. Huang, Phytochemistry, 1992, 31, 957 CAS; J.-S. Liu, H.-X. Zhou and L. Li, Phytochemistry, 1992, 31, 1379 CrossRef CAS.
  5. U. P. Topiwala and D. A. Whiting, J. Chem. Soc., Chem. Commun., 1994, 2443 RSC.
  6. Inter alia: D. H. R. Barton, H. Togo and S. Z. Zard, Tetrahedron, 1985, 41, 5507 Search PubMed; D. H. R. Barton, D. Crich and W. B. Motherwell, Tetrahedron, 1985, 41, 3901 CrossRef CAS; D. H. R. Barton, D. Crich and G. Kretzschmar, J. Chem. Soc., Perkin Trans. 1, 1986, 39 CrossRef CAS; D. H. R. Barton, D. Bridon, I. Fernandez-Picot and S. Z. Zard, Tetrahedron, 1987, 43, 2733 RSC; D. H. R. Barton, Y. Hervé, P. Potier and J. Thierry, Tetrahedron, 1988, 44, 5479 CrossRef CAS.
  7. J. R. Thomas, J. Am. Chem. Soc., 1964, 86, 1446 CrossRef CAS; W. M. Fox and W. A. Waters, J. Chem. Soc., 1965, 4628 RSC.
  8. See for example, J. Sinnreich and D. Elad, Tetrahedron, 1968, 24, 4509 Search PubMed; D. Elad and R. D. Youssefyeh, Chem. Commun., 1965, 4509 CrossRef CAS; D. Elad, G. Friedman and R. D. Youssefyeh, J. Chem. Soc. (C), 1968, 870 Search PubMed.
  9. R. A. Jackson and W. A. Waters, J. Chem. Soc., 1960, 1653 RSC.
  10. G. B. Chalfont, D. H. Hey, K. S. Y. Liang and M. J. Perkins, J. Chem. Soc., Chem. Commun., 1967, 367 RSC; J. Chem. Soc. (B), 1971, 233, and refs. cited therein Search PubMed.
  11. G. B. Gill and G. H. Williams, J. Chem. Soc. (B), 1966, 880 RSC.
  12. K. Kurosaw, A. Hashiba and H. Takahashi, Bull. Chem. Soc. Japan, 1978, 51, 3612.
  13. R. F. Collins and M. Davis, J. Chem. Soc., 1961, 1863 RSC.
  14. J. J. Landi and K. Ramig, Syn. Comm., 1991, 21, 167 Search PubMed.
  15. Preparation of these starting materials will be discussed in a paper in preparation, dealing with other solutions to the problem of regiospecific synthesis of aryl alkyl ethers of substituted hydroquinones.
Click here to see how this site uses Cookies. View our privacy policy here.