Stereo-divergent synthesis of L-threo- and L-erythro-[2,3-2H2]amino acids using optically active dioxopiperazine as a chiral template

(Note: The full text of this document is currently only available in the PDF Version )

Makoto Oba, Tsutomu Terauchi, Yuki Owari, Yoko Imai, Izumi Motoyama and Kozaburo Nishiyama


Abstract

A stereo-divergent synthesis of L-threo- and L-erythro-[2,3-2H2]amino acids from the same chiral auxiliary is described. Aldolization of N,N[hair space]′-di(tert-butoxycarbonyl)dioxopiperazine 2, derived from L-valine, with various aldehydes followed by successive elaboration gives various 2,3-dehydroamino acid derivatives. Catalytic deuteriation of the derivatives then followed by acidic hydrolysis affords L-[2,3-2H2]amino acids in good yields with high optical purities. It becomes clear that diastereoselective deuteriation for either the threo or the erythro isomer depends upon the protective groups on the nitrogen atoms in the dioxopiperazine ring.


References

  1. K. Wuthrich, NMR of Proteins and Nucleic Acids, Wiley, New York, 1986 Search PubMed; G. C. K. Roberts, NMR of Macromolecules. A Practical Approach, Oxford University Press, Oxford, 1993 Search PubMed.
  2. Our recent work, see: (a) M. Oba and K. Nishiyama, Tetrahedron, 1994, 50, 10 193 CrossRef CAS; (b) K. Nishiyama, M. Oba, R. Ueno, A. Morita, Y. Nakamura and M. Kainosho, J. Labelled Compd. Radiopharm., 1994, 34, 831 CAS; (c) M. Oba, T. Terauchi, J. Hashimoto, T. Tanaka and K. Nishiyama, Tetrahedron Lett., 1997, 38, 5515 CrossRef CAS.
  3. M. Oba, R. Ueno, M. Fukuoka, M. Kainosho and K. Nishiyama, J. Chem. Soc., Perkin Trans. 1, 1995, 1603 RSC.
  4. R. M. Williams, Synthesis of Optically Active a-Amino Acids, Pergamon, Oxford, 1989 Search PubMed.
  5. M. Oba, S. Nakajima and K. Nishiyama, Chem. Commun., 1996, 1875 RSC.
  6. A catalytic hydrogenation of dehydrodioxopiperazine derivatives has been reported by Izumiya et al., however, it was limited to nonprotected dioxopiperazine derivatives and the chief chiral auxiliary employed for their work was L-alanine, see: (a) T. Kanmera, S. Lee, H. Aoyagi and N. Izumiya, Tetrahedron Lett., 1979, 4483 CrossRef; (b) S. Lee, T. Kanmera, H. Aoyagi and N. Izumiya, Int. J. Peptide Protein Res., 1979, 13, 207 Search PubMed; (c) T. Kanmera, S. Lee, H. Aoyagi and N. Izumiya, Int. J. Peptide Protein Res., 1980, 16, 280 Search PubMed; (d) K. Tanimura, T. Kato, M. Waki, S. Lee, Y. Kodera and N. Izumiya, Bull. Chem. Soc. Jpn., 1984, 57, 2193 CAS.
  7. C. Gallina and A. Liberatori, Tetrahedron, 1974, 30, 667 CrossRef CAS.
  8. M. M. Campbell, D. C. Horwell, M. F. Mahon, M. C. Pritchard and S. P. Walfold, Bioorg. Med. Chem. Lett., 1993, 3, 667 CrossRef CAS.
  9. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1987, 107, 3902.
  10. M. Oba, Y. Kawahara, K. Nishiyama, M. Kitsukawa and M. Kainosho, Bulletin of the School of High-Technology for Human Welfare Tokai University, 1994, 3, 125 Search PubMed.
  11. J. E. Rose, P. D. Leeson and D. Gani, J. Chem. Soc., Perkin Trans. 1, 1992, 1563 RSC.
  12. G. M. Sheldrick, Crystallographic Computing 3, Oxford University Press, Oxford, 1985 Search PubMed.
  13. D. T. Cromer and J. T. Waber, International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, UK, 1974, vol. IV, Table 2.2 A Search PubMed.
  14. J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781 CrossRef.
  15. D. C. Creagh and W. J. McAuley, International Tables for Crystallography, Kluwer Academic Publishers, Boston, 1992, vol. C, Table 4.2.6.8 Search PubMed.