Reduction of electron-deficient pyrroles using group I and II metals in ammonia

(Note: The full text of this document is currently only available in the PDF Version )

Timothy J. Donohoe, Paul M. Guyo, Roy L. Beddoes and Madeleine Helliwell


Abstract

The preparation and Birch reduction of a series of electron-deficient pyrroles is described. This methodology allows the synthesis of a variety of C-2 substituted 3-pyrrolines[hair space]‡ in good to excellent yields. The role of various activating groups (amide, ester, carbamate and urea) has been examined with regard to both stability under the Birch conditions and ease of deprotection after reduction. In addition, we discovered that the 3-pyrroline skeleton can be oxidised at C-5 with chromium trioxide–3,5-dimethylpyrazole to form the 3-pyrrolin-2-one nucleus. The identity of the Birch reduced products and also of the oxidised 3-pyrrolin-2-ones has been confirmed by X-ray crystallography on two derivatives.


References

  1. For example see: A. Gossauer and P. Nesvadba, in The Chemistry of Heterocyclic Compounds: Pyrroles, J. Wiley, New York, 1990, vol. 48, Part 1 Search PubMed.
  2. G. W. Gribble, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, New York, 1991, vol 8 Search PubMed; T. J. Donohoe, R. Garg and C. A. Stevenson, Tetrahedron: Asymmetry, 1996, 7, 317 Search PubMed.
  3. G. G. Evans, J. Am. Chem. Soc., 1951, 73, 5230 CrossRef CAS; D. P. Schumacher and S. S. Hall, J. Am. Chem. Soc., 1982, 104, 6076 CrossRef CAS; J. Cornforth and Minghui Dui, J. Chem. Soc., Perkin Trans. 1, 1990, 1463 RSC.
  4. D. M. Ketcha, K. P. Carpenter and Q. Zhou, J. Org. Chem., 1991, 56, 1318 CrossRef CAS.
  5. J. W. Scott, A. Focella, U. O. Hengartner, D. R. Parrish and D. Valentine Jr., Synth. Commun, 1980, 10, 529 CAS.
  6. (a) For general reviews of the Birch reduction see: L. N. Mander, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, New York, 1991, vol 8 Search PubMed; (b) P. W. Rabideau and Z. Marcinow, Org. React., 1992, 42, 1 CAS; (c) P. W. Rabideau, Tetrahedron, 1989, 45, 1579 CrossRef CAS.
  7. A. J. Birch and J. Slobbe, Heterocycles, 1976, 5, 905 CAS.
  8. T. J. Donohoe and P. M. Guyo, J. Org. Chem., 1996, 61, 7664 CrossRef CAS.
  9. Compound 1 can also be prepared conveniently from pyrrole and trichloroacetyl chloride: J. W. Harbuck and H. Rapoport, J. Org. Chem., 1972, 37, 3618 Search PubMed; D. M. Wallace, S. H. Leung, M. S. O'Senge and K. Smith, J. Org. Chem., 1993, 58, 7245 CrossRef CAS.
  10. E. M. Kaiser, Synthesis, 1972, 391 CrossRef CAS.
  11. For example see: P. W. Rabideau and E. G. Burkholder, J. Org. Chem., 1978, 43, 4283 Search PubMed.
  12. J. M. Hook, L. N. Mander and M. Woolias, Tetrahedron Lett., 1982, 23, 4499 CrossRef ; see also P. W. Rabideau, D. M. Wetzel and D. M. Young, J. Org. Chem., 1984, 49, 1544 Search PubMed.
  13. For a reference to autoxidation see: A. H. Haines, Methods for the Oxidation of Organic Compounds, Academic Press, London, 1985 Search PubMed.
  14. E. J. Corey and G. W. Fleet, Tetrahedron Lett., 1973, 4499 CrossRef CAS.
  15. SIR92: A. Altomare, M. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Cryst., 1993, 26, 343 Search PubMed.
  16. TEXSAN, Structure analysis package, 1992, MSC, The Woodlands, TX 77 381, USA.
Click here to see how this site uses Cookies. View our privacy policy here.