Convenient route to γ-nitro-α-amino acids: conjugate addition of nitroalkanes to dehydroalanine derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Maxwell J. Crossley, Yik M. Fung, Jeffrey J. Potter and Andrew W. Stamford


Abstract

γ-Nitro-α-amino acid derivatives are obtained in good yield from the base-catalysed conjugate addition of nitroalkanes to N-protected dehydroalanine esters (methyl 2-amidoacrylates). The outcome of the reaction is dependent on the N-protecting group (the ease of the product formation correlates with the electron-withdrawing ability and hence stabilising effect on the adduct α-anion of the 2-substituent in the order phthalimido > benzyloxycarbonylamino > acetamido), the nitroalkane, and on the reaction conditions. Conditions were established in reactions of methyl 2-phthalimidoacrylate 4 with nitromethane for selectively obtaining 1∶1-, 2∶1- or 3∶1-adducts. Good yields of the 1∶1-adducts are obtained when the reaction is carried out with an excess of nitroalkane. Restricting the amount of nitromethane gives rise to the higher adducts. Similarly, reactions of 4 with nitroethane can be adjusted to give 1∶1- or 2∶1-adducts selectively. These reactions occur with little or no diastereoselectivity. As a model for a dehydroalanine residue in a peptide chain, the diamide N-cyclohexyl-2-acetamidoacrylamide 7 has been prepared. This dehydroalanine reacts with 2-nitropropane and with nitromethane in refluxing tert-butyl alcohol to give reasonable yields of 1∶1-adducts. As the nitro group of the resultant γ-nitro-α-amino acid derivatives can be transformed into a variety of other functionalities, the methodology described in this paper offers a versatile entry to a range of γ-substituted α-amino acids.


References

  1. M. J. Crossley, R. L. Crumbie, Y. M. Fung, J. J. Potter and M. A. Pegler, Tetrahedron Lett., 1987, 28, 2883 CrossRef CAS.
  2. R. C. Coombes, Comprehensive Organic Chemistry, Pergamon Press, Oxford, 1979, vol. 2, ch. 7 Search PubMed.
  3. N. Ono, H. Miyake, R. Tamura and A. Kaji, Tetrahedron Lett., 1981, 22, 1705 CrossRef CAS.
  4. N. Ono, A. Kamimura, H. Miyake, I. Hamamoto and A. Kaji, J. Org. Chem., 1985, 50, 3692 CrossRef CAS.
  5. N. Ono, Nitro Compounds; Recent Advances in Synthesis and Chemistry, VCH, New York, 1990, ch. 1 Search PubMed.
  6. K. Busch, U. M. Groth, W. Kühnle and U. Schöllkopf, Tetrahedron, 1992, 48, 5607 CrossRef CAS.
  7. F. Ikegami and I. Murakoshi, Phytochemistry, 1994, 35, 1089 CrossRef CAS.
  8. G. C. Lancini, A. Diena and E. Lazzari, Tetrahedron Lett., 1966, 1769 CrossRef CAS.
  9. U. Schmidt, J. Häusler, E. Öhler and H. Poisel, Fortschr. Chem. Org. Naturst., 1979, 37, 251 Search PubMed.
  10. A. Bernardini, A. E. Hallaoui, R. Jacquier, C. Pigiére, P. Viallefont and J. A. Bajgrowicz, Tetrahedron Lett., 1983, 24, 3717 CrossRef CAS.
  11. J. A. Bajgrowicz, A. E. Hallaoui, R. Jacquier, C. Pigiére and P. Viallefont, Tetrahedron Lett., 1984, 25, 2759 CrossRef.
  12. J. A. Bajgrowicz, A. E. Hallaoui, R. Jacquier, C. Pigiére and P. Viallefont, Tetrahedron, 1985, 41, 1833 CrossRef CAS.
  13. I. Photaki, J. Am. Chem. Soc., 1963, 85, 1123 CrossRef CAS.
  14. A. Srinivasan, R. W. Stephenson and R. K. Olsen, J. Org. Chem., 1977, 42, 2253 CrossRef CAS.
  15. L. D. Arnold, R. G. May and J. C. Vederas, J. Am. Chem. Soc., 1988, 110, 2237 CrossRef CAS.
  16. M. J. Crossley, R. C. Reid and A. W. Stamford, unpublished results.
  17. J. E. Baldwin, A. C. Spivey, C. J. Schofield and J. B. Sweeney, Tetrahedron, 1993, 49, 6309 CrossRef CAS.
  18. T. Wieland, G. Ohnacker and W. Ziegler, Chem. Ber., 1957, 90, 194 CAS.
  19. H. Wojciechowska, R. Pawlowicz, R. Andruszkiewicz and J. Grzybowska, Tetrahedron Lett., 1978, 4063 CrossRef CAS.
  20. H. Ogura, O. Sato and K. Takeda, Tetrahedron Lett., 1981, 22, 4817 CrossRef CAS.
  21. R. Andruszkiewicz and A. Czerwinski, Synthesis, 1982, 968 CrossRef CAS.
  22. A. J. Kolar and R. K. Olsen, Synthesis, 1977, 457 CrossRef CAS.
  23. M. Sokolovsky, T. Sadeh and A. Patchornik, J. Am. Chem. Soc., 1964, 86, 1212 CrossRef CAS.
  24. D. H. Rich, J. P. Tam, P. Mathiaparanam, J. A. Grant and C. Mabuni, J. Chem. Soc., Chem. Commun., 1974, 897 RSC.
  25. O. Pieroni, G. Montagnoli, A. Fissi, S. Merlino and F. Ciardelli, J. Am. Chem. Soc., 1975, 97, 6820 CrossRef CAS.
  26. H. Poisel and U. Schmidt, Angew. Chem., Int. Ed. Engl., 1976, 15, 294 CAS.
  27. A. Srinivasan, R. W. Stephenson and R. K. Olsen, J. Org. Chem., 1977, 42, 2256 CrossRef CAS.
  28. M. J. Crossley and C. W. Tansey, Aust. J. Chem., 1992, 45, 479 CAS.
  29. M. J. Crossley and A. W. Stamford, Aust. J. Chem., 1994, 47, 1695 CAS.
  30. J. H. Clark, J. Chem. Soc., Chem. Commun., 1978, 789 RSC.
  31. R. G. Pearson and R. L. Dillon, J. Am. Chem. Soc., 1953, 75, 2439 CrossRef CAS.
  32. O. Von Schickh, H. G. Padeken and A. Segnitz, in Houben-Weyl, ‘Methoden der Organischen Chemie’, 4th edn., ed. E. Muller, Georg Thieme Verlag, Stuttgart, 1971, vol. X/1, p. 182 Search PubMed.
  33. T. A. Alston, D. J. T. Porter and H. J. Bright, Acc. Chem. Res., 1983, 16, 418 CrossRef CAS.
  34. J. Zimmermann and D. Seebach, Helv. Chim. Acta, 1987, 70, 1104 CrossRef CAS.
  35. A. L. J. Beckwith and C. L. L. Chai, J. Chem. Soc., Chem. Commun., 1990, 1087 RSC.
  36. M. J. Crossley, Y. M. Fung, E. Kyriakopoulos and J. J. Potter, J. Chem. Soc., Perkin Trans. 1, 1998, 1123 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.