Glycoluril[hair space]† as an efficient molecular template for intramolecular Claisen-type condensations

(Note: The full text of this document is currently only available in the PDF Version )

Sengen Sun, Louise Edwards and Paul Harrison


Abstract

The readily prepared 3,4,7,8-tetramethylglycoluril 1 acts as a template to promote efficient intramolecular Claisen-like condensations between two acyl groups which are attached to the N-1 and N-6 positions. Thus, two sequential acylations of 1 give symmetric or unsymmetric diacylglycolurils 9–18 in good yield. Treatment of 9–18 with lithium tert-alkoxides furnishes N[hair space]-(β-ketoacyl)glycolurils 19–27 under mild conditions and in high yields; rate-limiting deprotonation, predominantly on the least substituted of the two acyl groups, precedes a fast intramolecular Claisen-type condensation. Reduction of the keto group in 19 and 26, followed by elimination of water gives alk-2-enoylglycolurils 6 and 7; conjugate hydride addition (L-Selectride) then gives alkanoylglycoluril 5. Compounds 5–7 undergo further rounds of N-acylation then intramolecular condensation. Linear chains can thus be constructed on 1 by repetitive sequences of acylation–condensation–functional group transformation. N[hair space]1-Alk-2-enoyl-N[hair space]6-alkanoylglycolurils 14–17 also afford condensation products with high selectivity upon treatment with L-Selectride, effecting a method for net reversal of the regioselectivity observed in the base-promoted rearrangement. The synthesized chains can be readily removed from the template, regenerating 1. The efficiency of the condensation reaction, the sequence of transformations and the ability to grow linear carbon chains in a repetitive manner mimic these aspects of the catalytic cycle of fatty acid synthases and polyketide synthases.


References

  1. R. B. Herbert, The Biosynthesis of Secondary Metabolites, Chapman and Hall, New York, 2nd edn., 1989 Search PubMed; J. Mann, Secondary Metabolism, Clarendon Press, Oxford, 2nd edn., 1987 Search PubMed.
  2. For recent reviews, see: D. O'Hagan, Nat. Prod. Rep., 1995, 12, 1 Search PubMed and preceding articles in this series.
  3. For reviews, see: C. W. Carreras, R. Pieper and C. Khosla, Top. Curr. Chem., 1997, 188, 85 Search PubMed; M. Siggaard-Andersen, Protein Sequences Data Anal., 1993, 5, 325 CAS.
  4. For selected reviews, see: L. Katz and S. Donadio, Ann. Rev. Microbiol., 1993, 47, 875 Search PubMed; D. E. Cane, Science, 1994, 263, 339 CrossRef CAS.
  5. For original examples, see: S. Yue, J. S. Duncan, Y. Yamamoto and C. R. Hutchinson, J. Am. Chem. Soc., 1987, 109, 1253 Search PubMed; D. E. Cane and C.-C. Yang, J. Am. Chem. Soc., 1987, 109, 1255 CrossRef CAS for a review, see: Z. Li, R. M. Martin, P. B. Reese, Y. Yoshizawa and J. C. Vederas, Environ. Sci. Res., 1992, 44, 27 CrossRef CAS.
  6. For general references to biomimics, see: R. Breslow, Chem. Soc. Rev., 1972, 1, 553 Search PubMed; H. Dugas, Bioorganic Chemistry, Springer-Verlag, New York, 2nd edn., 1996 RSCfor a recent review, see: A. J. Kirby, Angew. Chem., Int. Ed. Engl., 1996, 35, 707 RSC There are many examples of systems which mimic in vivo C–C bond-forming reactions without mimicking the catalysis due to binding in the enzyme, or the sequence of events that occurs: for example in syntheses of oligoketides reported on oxazolidones, the ‘starter’ unit in the biosynthetic scheme is the last unit to be attached, and the chain is grown in the opposite direction to that occurring on the FAS/PKS surfacefor other examples of intermolecular biomimetic Claisen-like condensations, see: T. M. Harris and C. M. Harris, Tetrahedron, 1977, 33, 2159 Search PubMed; Y. Kobuke and J. Yoshida, Tetrahedron Lett., 1978, 367 Search PubMed; D. W. Brooks, D.-L. Lu and S. Masamune, Angew. Chem., Int. Ed. Engl., 1979, 18, 72 CrossRef CAS for reviews of biomimetic oligoketide cyclizations, see: M. Yamaguchi, Stud. Nat. Prod. Chem., 1992, 11, 113 Search PubMed; T. M. Harris and C. M. Harris, Pure Appl. Chem., 1986, 58, 283 Search PubMed.
  7. S. Sun and P. Harrison, Tetrahedron Lett., 1992, 33, 7715 CrossRef CAS; S. Sun and P. Harrison, J. Chem. Soc., Chem. Commun., 1994, 2235 RSC; C. Cow, D. Valentini and P. Harrison, Can. J. Chem., 1997, 75, 884 CAS.
  8. A. I. Scott, C. J. Wiesner, S. Yoo and S. K. Chung, J. Am. Chem. Soc., 1975, 97, 6277 CrossRef CAS.
  9. For a review, see: S. Numa and T. Tanabe in New Comprehensive Biochemistry, ed. S. Numa, Elsevier, Amsterdam, 1984, vol. 7, p. 1 Search PubMed.
  10. H. Biltz, Chem. Ber., 1907, 40, 4806 Search PubMed.
  11. C. A. Brown, Synthesis, 1975, 326 CrossRef CAS for a review of the related Dieckmann condensation, see: J. P. Schaefer and J. J. Bloomfield, Org. React., 1967, 15, 1 Search PubMed.
  12. D. A. Evans, J. S. Clark, R. Metternich, V. J. Novack and G. S. Sheppard, J. Am. Chem. Soc., 1990, 112, 866 CrossRef CAS.
  13. D. A. Evans, M. D. Ennis, T. Le, N. Mandel and G. Mandel, J. Am. Chem. Soc., 1984, 106, 1154 CrossRef CAS.
  14. For a review, see: D. A. Evans, Aldrichimica Acta, 1982, 15, 23 Search PubMed.
  15. C. M. Tice and B. Ganem, J. Org. Chem., 1983, 48, 2106 CrossRef CAS.
  16. D. A. Evans, M. D. Ennis and D. J. Mathre, J. Am. Chem. Soc., 1982, 104, 1737 CrossRef CAS; M. P. Bonner and E. R. Thornton, J. Am. Chem. Soc., 1991, 113, 1299 CrossRef CAS.
  17. N. Li, S. Maluendes, R. H. Blessing, M. Dupuis, G. R. Moss and G. DeTitta, J. Am. Chem. Soc., 1994, 116, 6494 CrossRef CAS; B. A. Katz, B. Liu and R. Cass, J. Am. Chem. Soc., 1996, 118, 7914 CrossRef CAS.
  18. cf. D. A. Evans, M. T. Bilodeau, T. C. Somers, J. Clardy, D. Cherry and Y. Kato, J. Org. Chem., 1991, 56, 5750 Search PubMed.
  19. For the reduction of similar compounds, see: D. A. Evans and M. DiMare, J. Am. Chem. Soc., 1986, 108, 2477 Search PubMed and ref. 13.
  20. K. Narasaka, Org. Synth., 1987, 65, 12 CAS.
  21. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923 CrossRef CAS.
  22. M. R. Winkle, J. M. Lansinger and R. C. Ronald, J. Chem. Soc., Chem. Commun., 1979, 124 RSC.
  23. J. L. Lee, A. R. Branfman, T. R. Herrin and K. L. Rinehart, Jr., J. Am. Chem. Soc., 1978, 100, 4235.
Click here to see how this site uses Cookies. View our privacy policy here.