4-[Di(biphenyl-4-yl)amino]azobenzene and 4,4′-bis[bis(4′-tert-butylbiphenyl-4-yl)amino]azobenzene as a novel family of photochromic amorphous molecular materials

(Note: The full text of this document is currently only available in the PDF Version )

Yasuhiko Shirota, Kazuyuki Moriwaki, Satoru Yoshikawa, Toshiki Ujike and Hideyuki Nakano


Abstract

We have created photochromic amorphous molecular materials containing an azobenzene chromophore, 4-[di(biphenyl-4-yl)amino]azobenzene and 4,4′-bis[bis(4′-tert-butylbiphenyl-4-yl)amino]azobenzene (t-BuBBAB), which readily form amorphous glasses above room temperature and exhibit photochromism in their amorphous films. We have shown that the photogenerated cis-form in the amorphous film can be stabilized at ambient temperature by the incorporation of a bulky group; the backward cistrans thermal isomerization can be controlled by temperature for t-BuBBAB.


References

  1. Photochromism, Molecules and Systems, ed. H. Dürr and H. Bouas-Laurant, Elsevier, 1990 Search PubMed.
  2. Applied Photochromic Polymer Systems, ed. C. B. McArdle, Blackie & Son Ltd., 1992 Search PubMed.
  3. C. S. Paik and H. Morawetz, Macromolecules, 1972, 5, 171 CrossRef CAS.
  4. L. Lamarre and C. S. P. Sung, Macromolecules, 1983, 16, 1729 CrossRef CAS.
  5. I. Mita, K. Horie and K. Hirao, Macromolecules, 1989, 22, 558 CrossRef CAS.
  6. T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, T. Takahashi, R. Fukuda and K. Ichimura, Langmuir, 1993, 9, 211 CrossRef CAS.
  7. A. Yassar, C. Moustrou, H. K. Youssoufi, A. Samat, R. Guglielmetti and F. Garnier, Macromolecules, 1995, 28, 4548 CrossRef CAS.
  8. A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda and N. Tamai, J. Am. Chem. Soc., 1997, 119, 7791 CrossRef CAS.
  9. A. Zelichenok, F. Buchholtz, J. Ratner, E. Fischer and V. Krongauz, J. Photochem. Photobiol. A, 1994, 77, 201 CrossRef CAS.
  10. Y. Shirota, T. Kobata and N. Noma, Chem. Lett., 1989, 1145 CAS; A. Higuchi, H. Inada and Y. Shirota, Adv. Mater., 1991, 3, 549 CrossRef CAS; W. Ishikawa, H. Inada, H. Nakano and Y. Shirota, Chem. Lett., 1990, 1731; H. Inada and Y. Shirota, J. Mater. Chem., 1993, 3, 319 RSC; Y. Shirota, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 3148, 186 Search PubMed and references cited therein.
  11. DBAB: Yield 45%. Mp 223 °C; δH(600 MHz, THF-d8, TMS) 7.20 (d, 2H), 7.27 (d, 4H), 7.28 (t, 2H), 7.40 (t, 4H), 7.41 (t, 1H), 7.47 (t, 2H), 7.63 (d, 8H), 7.84 (d, 2H), 7.86 (d, 2H)m/z(EI) 501 (M+); Calc. for C36H27N3: C, 86.20; H, 5.42; N, 8.38. Found: C, 86.04; H, 5.41; N, 8.23%; λmax(toluene)(log ε) for trans-DBAB: 335 nm (4.5), 435 nm (4.5); λmax(toluene)(log ε) for cis-DBAB: 343 nm (4.5), 451 nm (3.9); t-BuBBAB: Yield 21%. Mp 356 °C; δH(600 MHz, 1,4-dioxane-d8, TMS) 1.34 (s, 36H), 7.23 (d, 4H), 7.28 (d, 8H), 7.46 (d, 8H), 7.54 (d, 8H), 7.57 (d, 8H), 7.80 (d, 4H); m/z(EI) 1044 (M+); Calc. for C76H76N4: C, 87.31; H, 7.33; N, 5.36. Found: C, 87.11; H, 7.24; N, 5.35%; λmax(toluene)(log ε) for trans-t-BuBBAB: 345 nm (4.7), 480 nm (4.7); λmax(toluene)(log ε) for cis-t-BuBBAB: 342 nm (4.8), 488 nm (3.9).
  12. The cis→trans thermal isomerization in the amorphous film could be analyzed in terms of the first-order kinetics consisting of two components. The rate constants for the faster component with a fraction of 0.05 and slower one with a fraction of 0.95 were 0.12 min–1 and 3.3 × 10–3 min–1, respectively.
Click here to see how this site uses Cookies. View our privacy policy here.