The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves

(Note: The full text of this document is currently only available in the PDF Version )

Robert Mokaya and William Jones


Abstract

Aluminosilicate mesoporous molecular sieves (Al-MMS) prepared at room temperature using hexadecylamine as template have been subjected to template extraction prior to calcination. Extraction in ethanol alone removes only that part of the template (in neutral form) which is not associated with framework Al while the presence of a cation (Na+ or NH4+) ensures total template removal. Template extraction has no effect on elemental composition and for dry (non-calcined) samples results in an improvement in structural ordering. The effect of calcination depends on the mode of extraction; samples extracted in ethanol or ethanol/NH4+ are structurally stable to calcination and possess surface area and pore volume similar to directly calcined samples while ethanol/Na+ extracted samples are relatively unstable and undergo considerable structural degradation resulting in lower surface area and pore volume. Dealumination results from calcination of amine or ammonium ion containing samples while Na containing samples do not undergo any dealumination. The acid content of calcined ethanol and ethanol/NH4+ extracted samples is comparable to that of the directly calcined samples but the extracted samples exhibit higher catalytic activity for the cracking of cumene. Calcined ethanol/Na extracted samples possess very low acidity and exhibit no catalytic activity.


References

  1. A. Corma, Chem. Rev., 1997, 97, 2373 CrossRef CAS.
  2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710 CrossRef CAS.
  3. Q. S. Hue, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth and G. D. Stucky, Nature, 1994, 368, 317 CrossRef CAS.
  4. J. S. Beck and J. C. Vartuli, Curr. Opin. Solid State Mater. Sci., 1996, 1, 76 CrossRef CAS.
  5. C.-Y. Chen, H.-X. Li and M. E. Davis, Microporous Mater., 1993, 2, 17 CrossRef CAS.
  6. R. Schmidt, D. Akporiaye, M. Stocker and O. H. Ellestad, Stud. Surf. Sci. Catal., 1994, 84, 677.
  7. S. Hitz and R. Prins, J. Catal., 1997, 168, 194 CrossRef CAS.
  8. P. T. Tanev and T. J. Pinnavaia, Science, 1995, 267, 865 CrossRef CAS.
  9. R. Mokaya and W. Jones, Chem. Commun., 1996, 981 RSC.
  10. R. Mokaya and W. Jones, Chem. Commun., 1996, 983 RSC.
  11. R. Mokaya and W. Jones, J. Catal., 1997, 172, 211 CrossRef CAS.
  12. A. Tuel and R. Gontier, Chem. Mater., 1996, 8, 114 CrossRef CAS.
  13. R. J. Ray, B. L. Meyes and C. L. Marshall, Zeolites, 1987, 7, 307 CrossRef.
  14. C. Breen, Clay Miner., 1991, 26, 487 Search PubMed.
  15. R. Mokaya, W. Jones, Z. Luan, M. D. Alba and J. Klinowski, Catal. Lett., 1996, 37, 113 CrossRef CAS.
  16. P. T. Tanev and T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068 CrossRef CAS.
  17. P. J. Branton, P. G. Hall, K. S. W. Sing, H. Reichert, F. Scuth and K. K. Unger, J. Chem. Soc., Faraday Trans., 1994, 90, 2965 RSC.
  18. J. Rathousky, A. Zukal, O. Franke and G. J. Shulzekloff, J. Chem. Soc., Faraday Trans., 1994, 90, 2821 RSC.
  19. M. J. Remy, D. Stanica, G. Poncelet, E. J. P. Feijen, P. J. Grobet, J. A. Martens and P. A. Jacobs, J. Phys. Chem., 1996, 100, 12440 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.