Photochromic reaction in a molecular glass as a novel host matrix: the 4-dimethylaminoazobenzene-4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine system

(Note: The full text of this document is currently only available in the PDF Version )

Kazuyuki Moriwaki, Mitsushi Kusumoto, Keiichi Akamatsu, Hideyuki Nakano and Yasuhiko Shirota


Abstract

For the purposes of clarifying the properties of a molecular glass as a novel host matrix and gaining information on the microstructure of the molecular glass, the photochromic behavior of 4-dimethylaminoazobenzene (DAAB) in a novel molecular glass of 4,4′,4′′-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA) was investigated, and compared with its behavior in a polystyrene glass matrix and a benzene solution. It was found that the fraction of the photoisomerized cis-isomer of DAAB at the photostationary state is smaller in the m-MTDATA glass matrix than in the polystyrene matrix and the benzene solution, and that the apparent initial rate constant for the backward cistrans thermal isomerization of DAAB is much larger in the m-MTDATA glass than in the polystyrene matrix and the benzene solution. These results suggest that the average size of local free volume in the molecular glass of m-MTDATA is smaller than that in the polystyrene glass.


References

  1. Photochromism, Molecules and Systems, ed. H. Dürr and H. Bouas-Laurant, Elsevier, 1990 Search PubMed.
  2. Applied Photochromic Polymer Systems, ed. C. B. McArdle, Blackie & Son, 1992 Search PubMed.
  3. C. S. Paik and H. Morawetz, Macromolecules, 1972, 5, 171 CrossRef CAS.
  4. C. D. Eisenbach, Makromol. Chem., 1978, 179, 2489 CAS.
  5. C. D. Eisenbach, Ber. Bunsenges. Phys. Chem., 1980, 84, 680 Search PubMed.
  6. J. G. Victor and J. M. Torkelson, Macromolecules, 1987, 20, 2241 CrossRef CAS.
  7. W.-C. Yu, C. S. P. Sung and R. E. Robertson, Macromolecules, 1988, 21, 355 CrossRef CAS.
  8. I. Mita, K. Horie and K. Hirao, Macromolecules, 1989, 22, 558 CrossRef CAS.
  9. G. S. Kumar and D. C. Neckers, Chem. Rev., 1989, 89, 1915 CrossRef CAS.
  10. T. Naito, K. Horie and I. Mita, Macromolecules, 1991, 24, 2907 CrossRef CAS.
  11. S. Xie, A. Natansohn and P. Rochon, Chem. Mater., 1993, 5, 403 CrossRef CAS.
  12. Y. Shirota, T. Kobata and N. Noma, Chem. Lett., 1989, 1145 CAS.
  13. A. Higuchi, H. Inada, T. Kobata and Y. Shirota, Adv. Mater., 1991, 3, 549 CrossRef CAS.
  14. Y. Kuwabara, H. Ogawa, H. Inada, N. Noma and Y. Shirota, Adv. Mater., 1994, 6, 677 CAS.
  15. Y. Shirota, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada and Y. Yonemoto, J. Lumin., 1997, 72–74, 985 CrossRef CAS.
  16. H. Ogawa, H. Inada and Y. Shirota, Macromol. Symp., 1997, 125, 171.
  17. W. Ishikawa, H. Inada, H. Nakano and Y. Shirota, Chem. Lett., 1991, 1731 CAS.
  18. W. Ishikawa, H. Inada, H. Nakano and Y. Shirota, Mol. Cryst. Liq. Cryst., 1992, 211, 431 Search PubMed.
  19. W. Ishikawa, H. Inada, H. Nakano and Y. Shirota, J. Phys. D: Appl. Phys., 1993, 26, B94 CrossRef CAS.
  20. W. Ishikawa, K. Noguchi, Y. Kuwabara and Y. Shirota, Adv. Mater., 1993, 5, 559 CrossRef CAS.
  21. E. Ueta, H. Nakano and Y. Shirota, Chem. Lett., 1994, 2397 CAS.
  22. H. Kageyama, K. Itano, W. Ishikawa and Y. Shirota, J. Mater. Chem., 1996, 6, 675 RSC.
  23. K. Katsuma and Y. Shirota, Adv. Mater., 1998, 10, 223 CrossRef CAS.
  24. H. Nakano, E. Ueta and Y. Shirota, Mol. Cryst. Liq. Cryst., 1998, 313, 241 Search PubMed.
  25. H. Inada and Y. Shirota, J. Mater. Chem., 1993, 3, 319 RSC.
  26. A. Higuchi, K. Ohnishi, S. Nomura, H. Inada and Y. Shirota, J. Mater. Chem., 1992, 2, 1109 RSC.
  27. H. Inada, K. Ohnishi, S. Nomura, A. Higuchi, H. Nakano and Y. Shirota, J. Mater. Chem., 1994, 4, 171 RSC.
  28. S. Nomura, K. Nishimura and Y. Shirota, Thin Solid Films, 1996, 273, 27 CrossRef CAS.
  29. M. Yoshiiwa, H. Kageyama, F. Wakasa, M. Takai, K. Gamo and Y. Shirota, Appl. Phys. Lett., 1996, 69, 2605 CrossRef CAS.
  30. T. Noda, I. Imae, N. Noma and Y. Shirota, Adv. Mater., 1997, 9, 239 CrossRef CAS.
  31. J. Sakai, H. Kageyama, S. Nomura, H. Nakano and Y. Shirota, Mol. Cryst. Liq. Cryst., 1997, 296, 445 Search PubMed.
  32. Y. Shirota, Proc. SPIE—Int. Soc. Opt. Eng., 1997, 3148, 186 Search PubMed and references cited therein.
  33. Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami and K. Imai, Appl. Phys. Lett., 1994, 65, 807 CrossRef CAS.
  34. T. Noda, H. Ogawa, N. Noma and Y. Shirota, Appl. Phys. Lett., 1997, 70, 669 CrossRef CAS.
  35. T. Noda, H. Ogawa, N. Noma and Y. Shirota, Adv. Mater., 1997, 9, 720 CrossRef CAS.
  36. K. Itano, H. Ogawa and Y. Shirota, Appl. Phys. Lett., 1998, 72, 636 CrossRef CAS.
  37. H. Nakano, K. Akamatsu, K. Moriwaki and Y. Shirota, Chem. Lett., 1996, 701 CAS.
  38. E. Fischer and Y. Frei, J. Chem. Phys., 1957, 27, 328 CrossRef CAS.
  39. G. Williams and D. C. Watts, Trans. Faraday Soc., 1970, 66, 80 RSC.
  40. W. J. Albery, P. N. Bartlett, C. P. Wilde and J. R. Darwent, J. Am. Chem. Soc., 1985, 107, 1854 CrossRef CAS.
  41. D. Schulte-Frohlinde, Liebigs Ann. Chem., 1958, 612, 138 Search PubMed.
  42. N. Nishimura, T. Sueyoshi, H. Yamanaka, E. Imai, S. Yamamoto and S. Hasegawa, Bull. Chem. Soc. Jpn., 1976, 49, 1381 CAS.
  43. The reaction in the higher temperature region above 77 °C could not be carried out due to crystallization of the reaction system.
Click here to see how this site uses Cookies. View our privacy policy here.