Formation of mesoporous, zirconium(IV) oxides of controlled surface areas

(Note: The full text of this document is currently only available in the PDF Version )

Philippe Trens, Michael J. Hudson and Renaud Denoyel


Abstract

Control of the surface areas of the calcined zirconium(iv) oxides arises from the extent of equilibration permitted between the hydrolysed zirconyl oxychloride and the surfactant prior to calcination. The properties of the zirconia–surfactant materials, which are formed by a scaffolding and controlled drying mechanism, and the subsequent oxides obtained on calcination depend more on the times allowed for equilibration than on the ratios of zirconia:surfactant. During the equilibration overca. 24 hr between the hydrolysing zirconium oxychloride and CTAB, the small, unstable zirconium oxide particles mix intimately with the surfactant. These particles recrystallise (and loosely aggregate) on calcination to give tetragonal zirconias of intermediate surface areas


References

  1. A. Clearfield, Inorg. Chem., 1964, 3, 146 CrossRef CAS.
  2. M. Turrillas, P. Barnes, D. Gascoigne, J. Z. Turner, S. L. Jones, C. J. Norman, C. F. Pygall and A. J. Dent, Radiat. Phys. Chem., 1995, 45, 491 CrossRef CAS.
  3. A. Corma, Chem. Rev., 1997, 97, 2373 CrossRef CAS.
  4. R. Franklin, Catal. Today, 1991, 10, 405 CrossRef CAS.
  5. B. H. Davis, Catal. Today, 1994, 20, 220 CrossRef.
  6. M. J. Hudson and J. A. Knowles, J. Mater. Chem., 1996, 6, 89 RSC.
  7. G. Pachero, E. Zhao, A. Garcia, A. Skylarov and J. J. Fripiat, J. Mater. Chem., 1998, 8, 219 RSC.
  8. G. Pacheco, E. Zhao, A. Garcia, A. Skylarov and J. J. Fripiat, Chem. Commun., 1997, 491 RSC.
  9. Y.-Y. Huang, B. Y. Zhao and Y. C. Xie, Appl. Catal A: General, 1998, 171, 75 CrossRef CAS.
  10. R. G. Garvie, J. Phys. Chem., 1978, 82, 219.
  11. H. Saha, S. K. Dutta, S. M. Hassain, S. Chakraborty and A. Saha, Bull. Mater. Sci., 1998, 21, 195 Search PubMed.
  12. C. R. Aita, M. D. Wiggins, R. Whig, C. M. Scanlan and M. Gajdardziska-Josifovska, J. Appl. Phys., 1994, 79, 1176 CrossRef CAS.
  13. M. Gajdardziska-Joisfovska and C. R. Aita, J. Appl. Phys., 1994, 79, 1315 CrossRef.
  14. D. J. Jones, J. Jiménez-Jiminez, A. Jiménez-Lopez, P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castillón and J. Rozière, Chem. Commun., 1997, 431 RSC.
  15. A. Tuel, S. Gontier and R. Teissier, Chem. Commun., 1996, 651 RSC.
  16. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309 CrossRef CAS.
  17. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373 CrossRef.
  18. A. Clearfield, J. Mater. Res., 1990, 5, 161 CAS.
  19. J. L. Fryer, J. Colloid Interface Sci., 1976, 34, 132.
  20. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603 CrossRef CAS.
  21. L. Mercier and T. J. Pinnavaia, Adv. Mater., 1997, 9, 500 CrossRef CAS.
  22. K. K. Unger, J. Chromatogr. Libr., 1979, 16, 76 Search PubMed.
  23. D. C. Apperley, M. J. Hudson, M. T. J. Keene and J. A. Knowles, J. Mater. Chem., 1995, 5, 577 RSC.
  24. S. S. Prakash, C. J. Brinker, A. J. Hurd and S. M. Rao, Nature, 1995, 374, 349 CrossRef.
  25. F. G. R. Gimblett, A. A. Rahman and K. S. W. Sing, J. Colloid Interface Sci., 1984, 102, 483 CAS.
  26. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London 1982, 2nd edn., p. 163 Search PubMed.
  27. E. Prouzet and T. J. Pinnavaia, Angew. Chem., 1997, 36, 516 CAS.
  28. Design of New Materials, ed. D. L. Locke and A. Clearfield, Plenum, New York, 1986 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.