Self propagating high-temperature synthesis of chromium substituted magnesium zinc ferrites Mg0.5Zn0.5Fe2–xCrxO4 (0≤x≤1.5)

(Note: The full text of this document is currently only available in the PDF Version )

Maxim V. Kuznetsov, Quentin A. Pankhurst and Ivan P. Parkin


Abstract

Magnesium ferrite MgFe2O4 and chromium substituted magnesium-zinc ferrite Mg0.5Zn0.5Fe2–xCrxO4 (0≤x≥1.5) have been made in air by self-propagating high temperature synthesis (SHS), a combustion process involving the reaction of magnesium, zinc, iron(III) and chromium(III) oxides with iron or chromium metal powders and sodium perchlorate. This produced an orange-yellow propagation wave of velocity 2-3 mm s–1. Two series of SHS samples were produced: series 1, SHS followed by annealing at 1400°C for 2 h and series 2, SHS in a magnetic field of 1.1 T followed by annealing at 1400C for 2 h. X-Ray data showed that in all cases nearly phase pure cubic spinel ferrites were produced. Changes in the cubic lattice parameter were seen as a function of Zn and Cr content. Room temperature and 80 K Mössbauer data showed a significant change in sublattice occupancy with Cr content. Magnetic hysteresis data for series 1 and 2 showed that the coercive force of doped samples is higher than pure compositions whilst magnetisation is lower. It was also shown that the use of a magnetic field during SHS can influence the microstructure and magnetic properties of the final material.


References

  1. I. P. Parkin, Chem. Soc. Rev., 1996, 199 RSC; I. P. Parkin, G. E. Elwin, A. V. Komarov, Q. T. Bui, Q. A. Pankhurst, L. Fernandez Barquin and Y. G. Morozov, J. Mater. Chem., 1998, 8, 573 RSC.
  2. A. G. Merzhanov, Proc. Technol., 1996, 56, 222 Search PubMed.
  3. A. E. Padalino, J. Am. Ceram. Soc., 1960, 43, 183; Y. D. Tretyakov and N. I. Oleinikov, Inorg. Mater., 1965, 1, 254 Search PubMed.
  4. Ferrites, ed. L. A. Rabkin, S. A. Soskin and B. S. Epshtein, Energy, Leningrad, 1968, p. 384.
  5. H. Kojima, in Ferromagnetic Materials: A Handbook of the Properties of Magnetically Ordered Substances, ed. E. P. Wohlfarth, North-Holland, Amsterdam, 1982, vol. 3 Search PubMed.
  6. V. S. Darshane, S. S. Lokegaonkar and S. G. Oak, J. Phys. IV Fr., 1997, 7, C1 Search PubMed.
  7. M. V. Kuznetsov, Y. G. Morozov, M. D. Nersesyan and T. I. Ignateva, Inorg. Mater., 1995, 31, 1125 Search PubMed.
  8. L. C. F. Blackman, Trans. Faraday Soc., 1959, 55, 391 RSC.
  9. A. H. Morrish and P. E. Clark, Phys. Rev. B, 1975, 11, 278 CrossRef CAS.
  10. E. W. Gorter, Philips Res. Rep., 1954, 9, 295 Search PubMed.
  11. F. C. Romeijn, Philips Res. Rep., 1953, 8, 304 Search PubMed.
  12. R. Shanon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  13. Q. A. Pankhurst, S. Suharan and M. F. Thomas, J. Phys. Condens. Matter, 1992, 4, 3551 CrossRef CAS.
  14. P. M. A. de Bakker, E. De Grave, D. Gryffroy, R. E. Vandenberghe and P. Moens, Mater. Sci. Forum, 1991, 79–82, 777 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.