Layered molecular optoelectronic assemblies

(Note: The full text of this document is currently only available in the PDF Version )

Itamar Willner and Bilha Willner


Abstract

Layered functionalized electrodes are used as optoelectronic assemblies for the electronic transduction of recorded photonic signals. Functionalization of a Au electrode with a photoisomerizable redox-activated monolayer enables the amperometric transduction of the photonic information recorded by the interface. This is exemplified with the organization of a phenoxynaphthacenequinone monolayer (1a). Organization of a photoactivated command layer on an electrode can be used to control interfacial electron transfer and might be applied for the electrical transduction of recorded optical signals. This is addressed with the assembly of a nitrospiropyran photoisomerizable monolayer (2a) on a Au electrode which acts as a command surface for controlling by light interfacial electron transfer. The monolayer undergoes photoisomerization between the neutral state (2a) and the positively charged protonated merocyanine state (2b). The charged interface controls the oxidation of dihydroxyphenylacetic acid, DHPAA (3), and of 3-hydroxytyramine, DOPA (4), and the system is used for the electrochemical transduction of optical signals recorded by the monolayer. Functionalization of electrodes with a β-cyclodextrin monolayer or with an eosin π-donor layer enables the light-stimulated association or dissociation of the photoisomerizable N,N′-bipyridinium azobenzene (5t) and of bis-pyridinium azobenzene (8t) to or from the modified surfaces. Association and dissociation of the surface-associated supramolecular complexes are transduced by electrochemical or piezoelectrical signal outputs. The organization of a supramolecular system where a molecular component is translocated by light-signals between two distinct positions enables one to design ‘molecular machines’. This is exemplified by the organization of a molecular assembly consisting of a ferrocene-functionalized β-cyclodextrin (11) threaded onto an azobenzene-alkyl chain wire and stoppered with an anthracene barrier which acts as a nanoscale molecular machine, a light-stimulated ‘molecular train’. The ferrocene-functionalized β-cyclodextrin is reversibly translocated between the trans-azobenzene and the alkyl chain by cyclic light-induced isomerization of the photoactive monolayer. The position of the β-cyclodextrin receptor is transduced by its chronoamperometric response.


References

  1. (a) J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 102, 1347 CAS; (b) F. L. Carter, A. Schultz and D. Duckworth, in Molecular Electronic Devices, ed. F. L. Carter, Marcel Dekker, New York, 1987, p. 183 Search PubMed.
  2. (a) V. Balzani, L. Moggi and F. Scandola, in Supramolecular Photochemistry, ed. V. Balzani, Reidel, Dordrecht, 1987, pp. 1–28 Search PubMed; (b) Molecular Electronic Devices, ed. F. L. Carter, R. E. Siatkowsky and H. Woltjien, Elsevier, Amsterdam, 1988 Search PubMed; (c) P. Ball, Nature, 1993, 362, 123 CrossRef.
  3. A. P. DeSilva, H. Q. N. Gunaratne and C. P. McCoy, Nature, 1993, 364, 42 CrossRef.
  4. P. Ball and L. Garwin, Nature, 1992, 355, 761 CrossRef.
  5. D. Bradley, Science, 1993, 259, 890.
  6. (a) R. A. Bissell, A. P. DeSilva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, C. P. McCoy and K. R. A. S. Sandanayake, Top. Curr. Chem., 1993, 168, 223–264; (b) W. Göpel and P. Heiduschka, Biosens. Bioelectron., 1995, 10, 853 CrossRef CAS.
  7. (a) I. Willner, E. Katz and B. Willner, Electroanalysis, 1997, 9, 965 CAS; (b) E. Katz, V. Heleg-Shabtai, B. Willner and I. Willner, Bioelectrochem. Bioenerg., 1997, 42, 95 CrossRef; (c) I. Willner, R. Blonder, E. Katz, A. Stocker and A. F. Bückmann, J. Am. Chem. Soc., 1996, 118, 5310 CrossRef CAS.
  8. K. E. Drexler, Nanosystems, Molecular Machinery, Manufacturing and Computation, Wiley, New York, 1992 Search PubMed.
  9. (a) G. De Santis, L. Fabbrizzi, M. Licchelli, M. Pallavicini, A. Perotti and A. Poggi, Supramol. Chem., 1994, 3, 115 CAS; (b) L. Fabbrizzi and A. Poggi, Chem. Soc. Rev., 1995, 24, 197 RSC.
  10. (a) J. D. Winkler, K. Deshayes and B. Shao, in Bioorganic Photochemistry–Biological Application of Photochemical Switches, ed. H. Morrison, Wiley, New York, 1993, vol. 2, p. 169 Search PubMed; (b) J. Rosengaus and I. Willner, J. Phys. Org. Chem., 1995, 8, 54 CrossRef CAS; (c) F. Würthner and J. Rebek, Jr., Angew. Chem., Int. Ed. Engl., 1995, 34, 446 CrossRef.
  11. (a) S. Shinkai, T. Minami, T. Kusano and O. Manabe, J. Am. Chem. Soc., 1982, 104, 1967 CrossRef CAS; (b) P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, S. Menzer, L. Pérez-García, L. Prodi, J. F. Stoddart, M. Venturi, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 1995, 117, 11171 CrossRef.
  12. (a) S. L. Gilat, S. H. Kawai and J.-M. Lehn, Chem. Eur. J., 1995, 1, 275 CrossRef CAS; (b) S. H. Kawai, S. L. Gilat, R. Ponsinet and J.-M. Lehn, Chem. Eur. J., 1995, 1, 285 CrossRef CAS; (c) S. Liu, K. Hashimoto and A. Fujishima, Nature, 1990, 347, 658 CrossRef CAS; (d) K. Morigaki, Z. Liu, K. Hashimoto and A. Fujishima, J. Phys. Chem., 1995, 99, 14771 CrossRef CAS.
  13. R. Blonder, E. Katz, I. Willner, V. Wray and A. F. Bückmann, J. Am. Chem. Soc., 1997, 119, 11747 CrossRef CAS.
  14. I. Willner, S. Marx and Y. Eichen, Angew. Chem., Int. Ed. Engl., 1992, 31, 1243 CrossRef.
  15. (a) S. H. Kawai, S. L. Gilat and J.-M. Lehn, J. Chem. Soc., Chem. Commun., 1994, 1011 RSC; (b) L. Zelikovich, J. Libman and A. Shanzer, Nature, 1995, 374, 790 CrossRef CAS.
  16. T. R. Kelly, M. C. Bowyer, K. V. Bashkar, D. Debbington, A. Garcia, F. Lang, M. H. Kim and M. P. Jette, J. Am. Chem. Soc., 1994, 116, 3657 CrossRef CAS.
  17. T. R. Kelly, I. Tellitu and J. P. Sestelo, Angew. Chem., Int. Ed. Engl., 1997, 36, 1866 CrossRef CAS.
  18. (a) R. A. Bissell, E. Cordova, A. E. Kaifer and J. F. Stoddart, Nature, 1994, 369, 133 CrossRef; (b) D. Philp and J. F. Stoddart, Synlett., 1991, 445 CrossRef CAS; (c) A. C. Benniston, A. Harriman and V. M. Lynch, J. Am. Chem. Soc., 1991, 117, 5275.
  19. E. Zahavy and M. A. Fox, Chem. Eur. J., 1998, 4, 1647 CrossRef CAS.
  20. (a) N. P. M. Huck and B. L. Feringa, J. Chem. Soc., Chem. Commun., 1995, 1095 RSC; (b) B. L. Feringa, W. F. Jager and B. de Lange, J. Am. Chem. Soc., 1991, 113, 5468 CrossRef CAS.
  21. (a) E. Katz and I. Willner, Electroanalysis, 1995, 7, 417 CAS; (b) I. Moriguchi, K. Hanai, A. Hoshikuma, Y. Teraoka and S. Kagawa, Chem. Lett., 1994, 691 CAS.
  22. (a) E. Katz, M. Lion-Dagan and I. Willner, J. Electroanal. Chem., 1996, 408, 107 CrossRef CAS; (b) E. Katz, A. L. De Lacey and V. M. Fernandez, J. Electroanal. Chem., 1993, 358, 261 CrossRef CAS; (c) N. Nakashima and T. Tagushi, Colloids Surf. A., 1995, 103, 159 CrossRef CAS.
  23. (a) S. Shinkai, T. Minami, T. Kusano and O. Manabe, J. Am. Chem. Soc., 1982, 104, 1967 CrossRef CAS; (b) M. Blank, L. M. Soo, N. H. Wassermann and B. F. Erlangler, Science, 1981, 214, 70 CAS.
  24. (a) M. P. Debreczeny, W. A. Svec and M. R. Wasielewski, Science, 1996, 274, 584 CrossRef CAS; (b) R. W. Wagner, J. S. Lindsey, J. Seth, V. Palaniappan and D. F. Bocian, J. Am. Chem. Soc., 1996, 118, 3996 CrossRef CAS; (c) L. De Cola, V. Balzani, F. Barigelletti, L. Flamigni, P. Belser, A. Von Zelewsky, M. Frank and F. Vögtle, Inorg. Chem., 1993, 32, 5228 CrossRef CAS.
  25. A. Credi, V. Balzani, S. J. Langford and J. F. Stoddart, J. Am. Chem. Soc., 1997, 119, 2679 CrossRef CAS.
  26. (a) J. Daub, J. Salbeck, T. Knöchel, C. Fisher, H. Kunkely and K. M. Rapp, Angew. Chem., Int. Ed. Engl., 1989, 28, 1494 CrossRef; (b) J. Daub, C. Fischer, J. Salbeck and K. Ulrich, Adv. Mater., 1990, 2, 366 CAS; (c) J. Achatz, C. Fischer, J. Salbeck and J. Daub, J. Chem. Soc., Chem. Commun., 1991, 504 RSC.
  27. A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir–Blodgett to Self-Assembly, Academic Press, San Diego, 1991 Search PubMed.
  28. (a) H. O. Finklea, in Electroanalytical Chemistry, vol. 19, ed. A. J. Bard and I. Rubinstein, Marcel Dekker, New York, 1996, pp. 109–335 Search PubMed; (b) G. M. Whitesides and P. E. Laibinis, Langmuir, 1990, 6, 87 CrossRef CAS.
  29. L. H. Dubois and R. G. Nuzzo, Annu. Rev. Phys. Chem., 1992, 43, 437 CrossRef CAS.
  30. (a) I. Willner, Acc. Chem. Res., 1997, 30, 347 CrossRef CAS; (b) I. Willner and S. Rubin, Angew. Chem., Int. Ed. Engl., 1996, 35, 367 CrossRef CAS.
  31. I. Willner and B. Willner, Adv. Mater., 1995, 7, 587 CrossRef CAS.
  32. (a) I. Willner, M. Lion-Dagan, S. Marx-Tibbon and E. Katz, J. Am. Chem. Soc., 1995, 117, 6581 CrossRef CAS; (b) M. Lion-Dagan, S. Marx-Tibbon, E. Katz and I. Willner, Angew. Chem., Int. Ed. Engl., 1995, 34, 1604 CAS.
  33. M. Lion-Dagan, E. Katz and I. Willner, J. Chem. Soc., Chem. Commun., 1994, 2741 RSC.
  34. (a) I. Willner, R. Blonder and A. Dagan, J. Am. Chem. Soc., 1994, 116, 9365 CrossRef CAS; (b) R. Blonder, S. Levi, G. Tao, I. Ben-Dov and I. Willner, J. Am. Chem. Soc., 1997, 119, 10467 CrossRef CAS; (c) A. Bardea, A. Dagan, I. Ben-Dov, B. Amit and I. Willner, Chem. Commun., 1998, 839 RSC; (d) A. Bardea, E. Katz, A. F. Bückmann and I. Willner, J. Am. Chem. Soc., 1997, 119, 9114 CrossRef CAS.
  35. I. Willner, G. Arad and E. Katz, Bioelectrochem. Bioenerg., 1998, 44, 209 CrossRef CAS.
  36. I. Willner and B. Willner, Adv. Mater., 1997, 9, 351 CrossRef CAS.
  37. (a) A. Doron, M. Portnoy, M. Lion-Dagan, E. Katz and I. Willner, J. Am. Chem. Soc., 1996, 118, 8937 CrossRef CAS; (b) A. Doron, E. Katz, M. Portnoy and I. Willner, Angew. Chem., Int. Ed. Engl., 1996, 35, 1535 CrossRef CAS.
  38. A. T. Hubbard, Heterog. Chem. Rev., 1994, 1, 3 Search PubMed.
  39. (a) E. Katz, N. Itzhak and I. Willner, J. Electroanal. Chem., 1992, 336, 357 CrossRef CAS; (b) E. Katz, N. Itzhak and I. Willner, Langmuir, 1993, 9, 1392 CrossRef CAS.
  40. (a) R. T. Lane and A. T. Hubbard, J. Phys. Chem., 1973, 77, 1411 CrossRef CAS; (b) K. Takehara and Y. Ide, Bioelectrochem. Bioenerg, 1992, 27, 207 CrossRef CAS.
  41. F. Malem and D. Mandler, Anal. Chem., 1993, 65, 37 CrossRef CAS.
  42. A. Doron, E. Katz, G. Tao and I. Willner, Langmuir, 1997, 13, 1783 CrossRef CAS.
  43. (a) M. Lahav, K. T. Ranjit, E. Katz and I. Willner, Chem. Commun., 1997, 259 RSC; (b) M. Lahav, K. T. Ranjit, E. Katz and I. Willner, Isr. J. Chem., 1997, 37, 185 CAS.
  44. (a) S. Marx-Tibbon, I. Ben-Dov and I. Willner, J. Am. Chem. Soc., 1996, 118, 4717 CrossRef CAS; (b) K. T. Ranjit, S. Marx-Tibbon, I. Ben-Dov, B. Willner and I. Willner, Isr. J. Chem., 1996, 36, 407 CAS; (c) K. T. Ranjit, S. Marx-Tibbon, I. Ben-Dov and I. Willner, Angew. Chem., Int. Ed. Engl., 1997, 36, 147 CAS.
  45. I. Willner, Y. Eichen, M. Rabinovitz, R. Hoffman and S. Cohen, J. Am. Chem. Soc., 1992, 114, 637 CrossRef CAS.
  46. I. Willner, Y. Eichen, A. Doron and S. Marx, Isr. J. Chem., 1992, 32, 53 CAS.
  47. E. Katz and I. Willner, Langmuir, 1997, 13, 3364 CrossRef CAS.
  48. I. Willner, V. Pardo-Yissar, E. Katz, K. T. Ranjit, submitted for publication.
Click here to see how this site uses Cookies. View our privacy policy here.