Resolution of optically active tris- and bis(diketonato)metal(III) complexes and their monolayer properties at an air–water interface

(Note: The full text of this document is currently only available in the PDF Version )

Shingen Kashiwara, Masayuki Takahashi, Mituo Nakata, Masahiro Taniguchi and Akihiko Yamagishi


Abstract

The monolayer properties of tris- and bis(diketonato)metal(iii) complexes were investigated at the air–water interface. The following eight complexes were synthesized: [Cr(acacNO2)3 ] (acacNO2=3-nitropentane-2,4-dionato), [Co(acacNO2)3 ], [Ru(PHE)3 ] (PHE=1,3-diphenylpropane-1,3-dionato), [Ru(HPD)3 ] (HPD=heptane-3,5-dionato), [Ru(NND)3 ] (NND=nonane-4,6-dionato), [Ru(DMH)3 ] (DMH=2,6-dimethylheptane-3,5-dionato), fac-[Ru(acacF3)3 ] (acacF3=1-1,3-bis(trifluoromethyl)propane-1,3-dionato) and [Ru(acac)2(PHE)]. When these complexes were eluted with a methanol–chloroform mixture on a column packed with Δ-[Ru(phen)3 ]2+ /laponite, resolution was achieved for [Cr(acacNO2)3 ], [Co(acacNO2)3 ], [Ru(HPD)3 ], [Ru(NND)3 ] and [Ru(acac)2(PHE)]. To study the monolayer behavior, a chloroform solution of a ruthenium(iii) complex was spread onto a water surface and a surface pressure–molecular area (πA) curve was measured. The πA curves for [Ru(DMH)3 ], fac-[Ru(acacF3)3 ] and [Ru(NND)3 ] were reversible. The πA curves for other compounds displaced irreversibly towards smaller molecular areas on the second compression, indicating that the compounds formed microcrystallites under high surface pressure. In the case of [Ru(NND)3 ], the stereochemical effects on monolayer formation were studied by comparing the πA curves between a racemic mixture and an enantiomer. As a result, the racemic mixture of the complex was found to form a more compact monolayer than the pure enantiomer.


References

  1. G. G. Roberts, Langmuir–Blodgett Films, Plenum, New York, 1990 Search PubMed.
  2. T. Richardson and G. G. Roberts, Thin Solid Films, 1988, 160, 231 CrossRef CAS.
  3. G. G. Roberts, Adv. Phys., 1985, 34, 475 CAS.
  4. G. S. F. Mason, Molecular Optical Activities and the Chiral Discriminations, Cambridge University Press, Cambridge, 1982, pp. 169–175 Search PubMed.
  5. A. Yamagishi, J. Coord. Chem., 1987, 16, 131 CrossRef CAS.
  6. H. Sato, A. Yamagishi and S. Kato, J. Am. Chem. Soc., 1992, 114, 10933 CrossRef CAS.
  7. Y. Nakamura and A. Yamagishi, J. Chromatogr., 1989, 482, 165 CrossRef CAS.
  8. A. Yamagishi, Y. Goto and M. Taniguchi, J. Phys. Chem., 1996, 100, 1827 CrossRef CAS.
  9. A. Yamagishi, N. Sasa, M. Taniguchi, A. Endo, M. Sakamoto and K. Shimizu, Langmuir, 1997, 13, 1689 CrossRef CAS.
  10. J. P. Collman, Angew. Chem., 1965, 77, 154 CAS.
  11. A. Endo, K. Shimizu, G.-P. Sato and M. Mukaide, Chem. Lett., 1984, 437 CAS.
  12. Y. Kasahara, Y. Hoshino, K. Shimizu and G.-P. Sato, Chem. Lett., 1990, 381 CAS.
  13. A. Drake, J. M. Gould, S. F. Mason, C. Rosini and F. J. Woodley, Polyhedron, 1983, 2, 537 CrossRef CAS.
  14. S. F. Mason, R. D. Peacock and T. J. Prosperi, J. Chem. Soc., Dalton Trans., 1977, 702 RSC.
  15. H. Kobayashi, H. Matsuzawa, Y. Kaizu and A. Ichida, Inorg. Chem., 1987, 26, 4318 CrossRef CAS.
  16. G. L. Gaines, Insoluble Monolayers at Liquid–Gas Interface, Interscience Publishers, London, 1966 Search PubMed.
  17. Y. S. Obeng and A. J. Bard, J. Am. Chem. Soc., 1991, 113, 6279 CrossRef CAS.
  18. R. Kuroda and S. F. Mason, Acta Chem. Scand., 1966, 20, 191.
  19. B. Morosin, Acta Crystallogr., 1965, 19, 131 CrossRef CAS.
  20. H. Matsuzawa, Y. Ohashi, Y. Kaizu and H. Kobayashi, Inorg. Chem., 1988, 27, 2981 CrossRef CAS.
  21. A. Yamagishi, J. Coord. Chem., 1987, 16, 131 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.