The effects of crystallite growth and dopant migration on the carbon monoxide sensing characteristics of nanocrystalline tin oxide based sensor materials

(Note: The full text of this document is currently only available in the PDF Version )

Steven R. Davis, Alan V. Chadwick and John D. Wright


Abstract

Tin oxide nanocrystals, both pure and Cu2+ and Fe3+ doped, have been prepared by a sol–gel process. The response of these materials to carbon monoxide in dry air has been investigated as a function of annealing temperature. The growth of the crystallites was monitored by XRPD from room temperature to about 900 °C and the response of the material to CO was studied for materials annealed over that temperature range. All of the materials were shown to respond to low concentrations of CO with a narrow peak in sensitivity at an operating temperature of about 200 °C. A good response to CO was also observed at an operating temperature of about 400 °C. No improvements in selectivity to CO were observed by the addition of either of the cation dopants. The sensitivity to CO was shown to decrease as crystallite size increased. The addition of the metal cation dopants impeded crystallite growth. Our previously reported Cu K-edge and Fe K-edge EXAFS measurements, on the Cu2+ and Fe3+ doped materials respectively, showed the dopant cations to move from ordered Sn4+ substitutional lattice sites in the as-prepared materials to more disordered regions, most likely the surface regions, as the materials were annealed. This dopant migration begins at about 400 °C and is accompanied by a corresponding large decrease in response to CO at an operating temperature of about 200 °C (the peak in sensitivity). This is attributed to the migration of the dopants to the surface of the crystallites and speculative explanations are given. The reduction in response of the same materials at an operating temperature of about 400 °C is not so large, indicating the response mechanisms at 200 and 400 °C to be different.


References

  1. V. Lantto, in Gas Sensors; Principles, Operations and Developments, ed. G. Sberveglieri, Kluwer, Dordrecht, 1992, p. 117 Search PubMed.
  2. D. E. Williams, in Solid State Gas Sensors, ed. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, p. 71 Search PubMed.
  3. N. Taguchi, UK Pat., 1280809, 1970 Search PubMed.
  4. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett., 1990, 441 CAS.
  5. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators B, 1991, 3, 147 CrossRef.
  6. S. R. Davis, A. Wilson and J. D. Wright, IEE Proc., Circuits, Devices Systems, in press Search PubMed.
  7. See for example, G. B. Burbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, Sens. Actuators B, 1995, 25, 559 Search PubMed.
  8. See for example, M. I. Ivanovskaya, P. A. Bogdanov, D. R. Orlick, A. Gurlo and V. V. Romanovskaya, Thin Solid Films, 1997, 296, 41 Search PubMed.
  9. S. R. Davis, Characterisation of Nanocrystalline Tin Oxide Sensor Materials, Ph.D. Thesis, University of Kent, 1997.
  10. G. S. Henshaw, V. Dusastre and D. E. Williams, J. Mater. Chem., 1996, 6, 1351 RSC.
  11. G. S. Henshaw, L. Morris, L. J. Gellman and D. E. Williams, J. Mater. Chem., 1996, 6, 1883 RSC.
  12. D. Kohl, Oxidic Semiconductor Gas Sensors, in Gas Sensors; Principles, Operation and Developments, ed. G. Sberveglieri, Kluwer, Dordrecht, 1992 Search PubMed.
  13. V. N. Mishra and R. P. Agarwal, Sens. Actuators B, 1994, 22, 121 CrossRef.
  14. J. P. Chatelon, C. Terrier, E. Bernstein, R. Berjoan and J. A. Roger, Thin Solid Films, 1994, 247, 162 CrossRef CAS.
  15. S. G. Ansari, P. Boroojerdian, S. K. Kulkarni, S. R. Sainkar, R. N. Karekar and R. C. Aiyer, J. Mater. Sci.—Mater. Electron., 1996, 7, 267 Search PubMed.
  16. V. Demarne and R. Sanjines, in Gas Sensors; Principles, Operations and Developments, ed. G. Sberveglieri, Kluwer; Dordrecht, 1992, p. 89 Search PubMed.
  17. G. B. Barbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, Sens. Actuators B, 1995, 25, 559 CrossRef.
  18. M. J. Fuller and M. E. Warwick, J. Catal., 1974, 34, 445 CAS.
  19. M. J. Fuller and M. E. Warwick, J. Catal., 1976, 42, 418 CAS.
  20. T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, J. Mater. Chem., 1994, 4, 1259 RSC.
  21. S. R. Davis, A. V. Chadwick and J. D. Wright, J. Phys. Chem. B, 1997, 101, 9901 CrossRef CAS.
  22. K. Matar, D. Zhao, D. Goldfarb, W. Azelee, W. Daniel and P. G. Harrison, J. Phys. Chem., 1995, 99, 9966 CrossRef CAS.
  23. H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, Wiley, New York, 1974 Search PubMed.
  24. P. B. M. Archer, A. V. Chadwick, J. J. Miasik, M. Tamizi and J. D. Wright, Sens. Actuators, 1989, 16, 379 CrossRef CAS.
  25. J. F. McAleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, J. Chem. Soc., Faraday Trans., 1987, 83, 1323 Search PubMed.
  26. P. A. Cox, The Electronic Structure and Chemistry of Solids, Oxford University Press, Oxford, 1987 Search PubMed.
  27. C. M. Freeman and C. R. A. Catlow, J. Solid State Chem., 1990, 85, 65 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.