Growth of calcium phosphate onto coagulated silica prepared by using modified simulated body fluids

(Note: The full text of this document is currently only available in the PDF Version )

Juan Coreño, Miguel A. Araiza and Victor M. Castaño


Abstract

Silica sols prepared by the alkaline hydrolysis of tetraethylorthosilicate were coagulated by adding an excess of a CaCl2 aqueous solution. The aggregates were immersed into three different modified simulated body fluids at 90°C to allow the growth of a calcium phosphate phase onto the silica aggregates. The apatite phase grew faster compared to previous studies. Also, the amount of the crystalline apatite yield was higher when the simulated body fluid employed had the largest Ca/P ratio, as measured by X-ray diffraction. The relevance of these findings is discussed in terms of the current and future trends in biomaterials research and development.


References

  1. K. A. Khor, P. Cheang and Y. Wang, JOM, 1997, 49, 51 Search PubMed.
  2. R. Rodríguez, J. Coreño and V. Castaño, Adv. Comp. Lett., 1996, 5, 25 Search PubMed.
  3. L. L. Hench and J. Wilson, Science, 1984, 226, 630 CrossRef CAS.
  4. F. H. Albee, Ann. Surg., 1920, 71, 32.
  5. R. Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine, Karger, Basel, Switzerland, 1991 Search PubMed.
  6. K. de Groot, in Contemporary Biomaterials, ed. J. W. Boretos and M. Eden, Noyes Publications, Park Ridge, NJ, 1984, pp. 477–492 Search PubMed.
  7. R. H. Doremus, J. Mater. Sci., 1992, 27, 285 CAS.
  8. M. M. Pereira, A. E. Clark and L. L. Hench, J. Am. Chem. Soc., 1995, 18, 2463.
  9. L. L. Hench, J. Am. Ceram. Soc., 1991, 74, 1487 CAS.
  10. L. L. Hench and A. E. Clark, Biocompatibiity of Orthopedic Implants, ed. E. F. Williams, CRC Press, Boca Raton, FL, 1982, vol. 2, pp. 129–170 Search PubMed.
  11. L. L. Hench and E. C. Ethridge, Biomaterials: An Interfacial Approach, Biophysics and Bioengineering Series, ed. A. Noordergraaf, Academic Press, New York, 1982, vol. 4, p. 139 Search PubMed.
  12. A. Ravaglioli and A. Krajewski, Bioceramics: Materials, Properties and Applications, Chapman & Hall, London, 1992, pp. 140 and 175 Search PubMed.
  13. T. J. Kokubo, J. Non-Cryst. Solids, 1990, 120, 138 CAS.
  14. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura and T. Yamamuro, J. Am. Ceram. Soc., 1992, 75, 2094 CAS.
  15. T. Kokubo, Biomaterials, 1991, 12, 1155 CrossRef.
  16. R. Fresa, A. Constantini, A. Buri and F. Branda, J. Non-Cryst. Solids, 1995, 16, 1249 CrossRef CAS.
  17. M. Tanahashi, T. Kokubo, T. Nakamura, Y. Katsura and M. Nagano, J. Non-Cryst. Solids, 1996, 17, 47 CrossRef CAS.
  18. C. Sung-Baek, N. Kazuki, T. Kokubo, N. Soga, C. Ohtsuki, T. Nakamura, T. Kitsugi and T. Yamamuro, J. Am. Ceram. Soc., 1995, 78, 1769.
  19. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura and T. Yamamuro, J. Mater. Sci. Mater. Med., 1993, 4, 127 CAS.
  20. M. A. Walters, Y. C. Leung, N. C. Blumenthal, R. Z. Legeros and K. A. Konsker, J. Inorg. Biochem., 1990, 39, 193 CrossRef CAS.
  21. J. W. P. Rothwell, J. S. Waugh and J. P. Yesinowski, J. Am. Chem. Soc., 1980, 102, 2637 CrossRef CAS.
  22. P. Li, K. Nakanishi, T. Kokubo and K. de Groot, Biomaterials, 1993, 14, 963 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.