Influence of solid-state transformation time on the nucleation and growth of silicalite 1 prepared from layered silicate

(Note: The full text of this document is currently only available in the PDF Version )

Martine Salou, Yoshimichi Kiyozumi, Fujio Mizukami, Padmakumar Nair, Kazuyuki Maeda and Shuichi Niwa


Abstract

The nucleation and crystal growth of silicalite 1 precursors synthesized by solid-state transformation were studied using X-ray diffraction, thermal analysis, IR spectroscopy,29Si and 13C NMR and electron microscopy. Silicalite 1 was obtained after 16 h at 130 °C in a closed glass ampoule. Comparison with hydrothermal synthesis showed that the characterization of the precursors presents some similarities, however, nucleation and crystal growth were much shorter for solid-state transformation. 29Si NMR showed that nucleation started during the first stage (cation exchange) for solid-state transformation, but only during the second stage for solid-state transformation. It was also observed that the major changes occurred during the beginning of crystal growth for solid-state transformation but during nucleation for hydrothermal synthesis. The results were explained by the fact that the starting materials were completely different: single layered silicate for solid-state transformation and colloidal silica for hydrothermal synthesis.


References

  1. V. R. Choudhary and S. Mayadevi, Zeolites, 1996, 17, 501 CrossRef CAS.
  2. T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami and K. Haraya, J. Membr. Sci., 1994, 95, 221 CrossRef CAS.
  3. E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner and J. V. Smith, Nature (London), 1978, 271, 512 CAS.
  4. S. L. Burkett and M. E. Davis, J. Phys. Chem., 1994, 98, 4647 CrossRef CAS.
  5. D. Tao, F. Fangxia, X. Yongzhuang and C. Jinghui, React. Kinet. Catal. Lett., 1997, 61, 97 CAS.
  6. S. Shimizu, Y. Kiyozumi, K. Maeda, F. Mizukami, G. Pál-Borbély, R. M. Mihályi and H. Beyer, Adv. Mater., 1996, 8–9, 759 CrossRef CAS.
  7. G. Lagaly, Adv. Colloid Interface Sci., 1979, 11, 105 CrossRef CAS.
  8. E. G. Derouane, S. Detremmerie, Z. Gabelica and N. Blom, Appl. Catal., 1981, 1, 201 CrossRef CAS.
  9. K. F. M. G. J. Scholle, W. S. Veeman, P. Frenken and G. P. M. van der Velden, Appl. Catal., 1985, 17, 233 CrossRef CAS.
  10. C. D. Chang and A. T. Bell, Catal. Lett., 1991, 8, 305 CAS.
  11. T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 1990, 63, 988 CrossRef CAS.
  12. Z. Johan and G. F. Maglione, Bull. Soc. Minéral. Cristallogr., 1972, 95, 371 Search PubMed.
  13. S. Hayashi, J. Mater. Chem., 1997, 7, 1043 RSC.
  14. B. M. Lok, T. R. Cannan and C. A. Messina, Zeolites, 1983, 3, 282 CrossRef CAS.
  15. G. Coudurier, C. Naccache and J. C. Vedrine, J. Chem. Soc., Chem. Commun., 1982, 1413 RSC.
  16. P. A. Jacobs, E. G. Derouane and J. Weitkamp, J. Chem. Soc., Chem. Commun., 1981, 591 RSC.
  17. G. Engelhardt and D. Michel, in High-Resolution Solid-State NMR of Silicates and Zeolites, John Wiley & Sons, Chichester, 1987, p. 129 Search PubMed.
  18. S. Inagaki, Y. Fukushima and K. Kuroda, Stud. Surf. Sci. Catal., 1994, 84, 125 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.