Structure, epitaxial growth and nucleation of CaO/SrO interfaces using energy minimisation, molecular dynamics and computer graphics

(Note: The full text of this document is currently only available in the PDF Version )

Dean C. Sayle


Abstract

Atomistic models of CaO/SrO interfaces have been constructedvia the sequential deposition of CaO species to SrO surfaces in conjunction with energy minimisation and dynamics. Using this approach the nucleation and growth mechanisms of CaO on the SrO support can be explored. The calculations suggest that the surface of the SrO substrate exacts a critical influence on the structure of the thin film. In particular, surface steps and roughness lead to incoherent films which are difficult to characterise with implications for the surface preparation of support materials. Conversely, the CaO species deposited may also degrade the SrO support: both charged and charge neutral surface vacancies on the SrO surface are created and surface steps are eroded during the deposition process. The results also suggest that the lattice misfit between the two materials is accommodated via defects and dislocations within the thin film in addition to considerable structural relaxation of the overlying thin film and the support.


References

  1. T. X. T. Sayle, C. R. A. Catlow, D. C. Sayle, S. C. Parker and J. H. Harding, Philos. Mag. A, 1993, 68, 565 Search PubMed.
  2. D. C. Sayle, C. R. A. Catlow, M.-A. Perrin and P. Nortier, J. Phys. Chem., 1996, 100, 8940 CrossRef CAS.
  3. H. Grimmer, W. Bollmann and D. H. Warrington, Acta Crystallogr., 1974, 30, 197 CrossRef.
  4. G. C. Bond, S. Flamerz and R. Shukri, Faraday Discuss., Chem. Soc., 1989, 87, 65 RSC.
  5. G. Centi, E. Giamello, D. Pinelli and F. Trifiro, J. Catal., 1991, 130, 220 CAS.
  6. D. Dimos, P. Chaudhari and J. Mannhart, Phys. Rev. B, 1990, 41, 4038 CrossRef CAS.
  7. E. Olsson, A. Gupta, M. D. Thouless, A. Segmuller and D. R. Clarke, Appl. Phys. Lett., 1991, 58, 1682 CrossRef CAS.
  8. M. Kubo, Y. Oumi, R. Miura, A. Fahmi, A. Stirling, A. Miyamoto, M. Kawasaki, M. Yoshimoto and H. Koinuma, J. Chem. Phys., 1997, 107, 4416 CrossRef CAS.
  9. M. Kubo, R. Miura, R. Yamauchi, M. Katagiri, R. Vetrivel, E. Broclawik and A. Miyamoto, Jpn. J. Appl. Phys., 1995, 34, 6873 CrossRef CAS.
  10. M. Kubo, Y. Oumi, R. Miura, A. Stirling, A. Miyamoto, M. Kawasaki, M. Yoshimoto and H. Koinuma, Phys. Rev. B, 1997, 56, 13535 CrossRef CAS.
  11. A. L. Shluger, A. L. Rohl and D. H. Gay, Phys. Rev. B, 1995, 51, 13 631 CrossRef CAS; A. L. Shluger, A. L. Rohl and D. H. Gay, J. Vac. Sci. Technol. B, 1995, 13, 1190 CrossRef CAS.
  12. D. C. Sayle, C. R. A. Catlow and M.-A. Perrin, Phys. Rev. B, 1997, 56, 15952 CrossRef CAS.
  13. B. G. Dick and A. W. Overhauser, Phys. Rev., 1958, 112, 90 CrossRef.
  14. T. S. Bush, C. R. A. Catlow and P. D. Battle, J. Mater. Chem., 1995, 5, 1269 RSC.
  15. D. H. Gay and A. L. Rohl, J. Chem. Soc., Faraday Trans., 1995, 91, 925 RSC.
  16. W. C. Swope, H. C. Anderson, P. H. Berens and K. R. Wilson, J. Chem. Phys., 1982, 76, 637 CrossRef CAS.
  17. C. W. Gear, The numerical integration of ordinary differential equations of various orders, Report ANL 7126, Argonne National Laboratory, 1966 Search PubMed.
  18. C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, NJ, 1971 Search PubMed.
  19. D. C. Sayle, PhD Thesis, University of Bath, 1992.
  20. O. Eibl, H. E. Hoenig, J.-M. Triscone, O. Fischer, L. Antognazza and O. Brunner, Physica C, 1990, 172, 373 CrossRef CAS.
  21. Y. Fujiwara, S. Hirata, M. Iyori and T. Kobayashi, Solid State Commun., 1990, 74, 641 CrossRef CAS.
  22. J. Narayan, S. Sharan, R. K. Singh and K. Jagannadham, Mater. Sci. Eng. B, 1989, 2, 333 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.