LaB6 crystals from fused salt electrolysis

(Note: The full text of this document is currently only available in the PDF Version )

M. Kamaludeen, I. Selvaraj, A. Visuvasam and R. Jayavel


Abstract

Purple crystals of LaB6 with high melting point (2500 °C) have been elecrotrodeposited from an oxyfluoride melt consisting of La2O3–B2O3–LiF–Li2O under an N2 atmosphere. The growth of LaB6 crystals has been observed under a controlled electrodeposition process. The cell set-up employed for the electrodeposition consists of a graphite crucible acting both as the cell container and anode and a centrally placed Mo rod acting as cathode. A stainless steel retort was employed to hold the graphite crucible and fix the electrodes under an N2 atmosphere. The pre-treatment applied to the electrolyte composition before electrolysis has been described. Characterization of the crystalline product by chemical analysis, XRD studies and other physical measurements is reported.


References

  1. H. Ahmad and A. N. Broers, J. Appl. Phys., 1972, 43, 2185 CrossRef.
  2. B. J. Curtis and H. Graffenberger, Mater. Res. Bull., 1966, 1, 27 CAS.
  3. I. Batko, M. Batkova, K. Flachbart, V. B. Flippor, Yu. B. Paderno, N. Yu. Schicevalova and Th. Wagner, J. Alloys Compds., 1995, 217, L1 CrossRef CAS.
  4. J. M. Lafferty, J. Appl. Phys., 1951, 22, 299 CAS.
  5. I. V. Zubeck, R. S. Feigelson, R. A. Huggins and Petit, J. Cryst. Growth, 1976, 34, 85 CrossRef CAS.
  6. H. K. Blomberk, M. J. Merisalo, M. M. Kosukora and V. N. Gurin, J. Alloys Compds., 1995, 217, 123 CrossRef.
  7. T. Kuroda, Researcher of the Electrochemical Lab., Tokyo, Japan, 1957, vol. 561, p. 63 Search PubMed.
  8. K. Uchide and M. Shiota, Surf. Technol., 1978, 7, 299 Search PubMed.
  9. A. Wold, Air Force Mater. Lab. Tech. Rept. AFML TR 239, 1967, p. 5 Search PubMed.
  10. K. Uchide, Surf. Technol., 1978, 7, 137 Search PubMed.
  11. L. Andrieux, Ann. Chim., 1929, 12, 423 CAS.
  12. J. L. Andrieux and D. Baebetti, C.R. Acad. Sci. (Paris), 1932, 194, 1573 Search PubMed.
  13. J. L. Andrieux, Ann. Chim (Paris), 1929, 10, 423 Search PubMed.
  14. J. R. Rea and E. Kostiner, J. Cryst. Growth, 1971, 11, 110 CrossRef CAS.
  15. L. W. Johnson and A. H. Daane, J. Phys. Chem., 1961, 65, 909.
  16. T. Aita, U. Kawabe and Y. Honda, J. Appl. Phys., 1974, 13, 251.
  17. M. M. Korsukova and V. N. Gurin, Mendeleev Chem. J., 1981, 26, 114 Search PubMed.
  18. T. Niemyski and E. Kierzek-Pecold, J. Cryst. Growth, 1968, 3/4, 162 CrossRef.
  19. T. Niemyski, I. Procka, J. Jun and J. Paderno, J. Less Common Met., 1968, 15, 97 Search PubMed.
  20. Von Stackeburg and M. Neumann, Z. Phys., Chem. B, 1932, 19, 314 Search PubMed.
  21. J. Johnson and L. H. Adams, J. Am. Chem. Soc., 1912, 34, 563 CrossRef.
  22. G. A. Meerson and M. P. Smirnov, Khim. Redk. Elem. Acad. Nauk. SSSR Inst. Neorg Khim., 1995, 2, 130 (Chem. Abstr., 1956, 50, 3122) Search PubMed.
  23. K. E. Antony and B. J. Welch, Aust. J. Chem., 1969, 22, 1993.
  24. J. L. Andrieux, Chim. Ind., 1932, 411 (Chem. Abstr., 1932, 26, 3442) Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.