Synthesis and characterisation of the new cubic phase CsVTeO5 and re-investigation of the pyrochlore CsVTeO6

(Note: The full text of this document is currently only available in the PDF Version )

Young-Sik Hong, M. Zakhour, M. A. Subramanian and J. Darriet


Abstract

The compound CsVTeO5 has been synthesized by solid state reactions and studied by X-ray powder diffraction. CsVTeO5 is polymorphic with a cubic high temperature variety, space group Fd3m and a=10.482(2). The observed X-ray powder pattern of this cubic phase is similar to the AB2O6 pyrochlore-type structure and also to those reported for ATiXO5 phases (A=Rb, Cs, Tl and X=P, As). These phases correspond to the high temperature cubic polymorph of KTiOPO4 (KTP). The framework of these cubic phases consists of randomly disordered TiO6 octahedra and XO4 (X=P, As) tetrahedra with the A+ cation occupying large cavities within this framework. The cubic phase 6' [a=10.483(1)], previously reported as a pyrochlore-type structure, corresponds in fact to CsVTeO5. The cubic CsVTeO6 phase, with a pyrochlore related structure, has also been synthesized and the structure was refined by Rietveld profiling of the X-ray data. The space group is Fd3m with a=10.077(1). The value of the unit cell parameter is in good agreement with those reported for the ABTeO6 pyrochlore series (A=K, Rb, Cs and B=Nb, Ta). The thermal stabilities of CsVTeO5 and CsVTeO6 under argon and oxygen atmospheres are discussed.


References

  1. J. Darriet, G. Guillaume and J. Galy, C. R. Acad. Sci. Paris, Sér. C, 1969, 269, 23 Search PubMed.
  2. J. Darriet, G. Guillaume, K. A. Wilhelmi and J. Galy, Acta Chem. Scand., 1972, 26, 59 CAS.
  3. J. Darriet, Bull. Soc. Fr. Minéral. Cristallogr., 1973, 96, 97 Search PubMed.
  4. S. Garcia-Martin, M. L. Veiga, A. Jerez, M. Gaitan and C. Pico, J. Chem. Soc., Dalton Trans., 1988, 2141 RSC.
  5. J. Rodriguez-Carvajal, Program Fullprof, version 3.2, Laboratoire Léon Brillouin, CEA-CNRS, Saclay, January 1997.
  6. L. K. Cheng, E. M. McCarron III, J. Calabrese, J. D. Bierlein and A. A. Ballman, J. Cryst. Growth, 1993, 132, 280 CrossRef CAS.
  7. L. K. Cheng, L. T. Cheng, F. C. Zumsteg, J. D. Bierlein and J. Galperin, J. Cryst. Growth, 1993, 132, 289 CrossRef CAS.
  8. M. Kunz, R. Dinnebier, L. K. Cheng, E. M. McCarron, D. E. Cox, J. B. Parise, M. Gehrke, J. Calabrese, P. W. Stephens, T. Vogt and R. Papoular, J. Solid State Chem., 1995, 120, 299 CrossRef CAS.
  9. I. Tordjman, R. Masse and J. C. Guitel, Z. Kristallogr., 1974, 139, 103 CAS.
  10. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  11. B. Darriet, M. Rat, J. Galy and P. Hagenmuller, Mater. Res. Bull., 1971, 6, 1305 CrossRef CAS.
  12. M. A. Subramanian, G. Aravamudan and G. V. Subbarao, Prog. Solid State Chem., 1983, 15, 55 CrossRef CAS.
  13. B. G. Hyde and S. Andersson, in Inorganic Crystal Structures, John Wiley and Sons, New York, 1989, p. 344 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.