3D Silicon oxide nanostructures: from nanoflowers to radiolaria

(Note: The full text of this document is currently only available in the PDF Version )

Yan Qiu Zhu, Nicole Grobert, Humberto Terrones, Jonathan P. Hare, Harold W. Kroto, Wen Kuang Hsu, Mauricio Terrones and David R. M. Walton


Abstract

Novel flower-like nanostructures consisting of silicon oxide nanofibers, radially attached to a single catalytic particle, were generated by solid-solid and gas-solid reactions under a temperature gradient. In this process, a mixture of SiC and Co powders, deposited on silica substrates and heated under an Ar/CO atmosphere at ca. 1500C, produced material with unusual three-dimensional (3D) networks of nanofibers of uniform diameter (ca. 20-120nm) and length (ca. 10-250mu;m). Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray powder diffraction and energy dispersive X-ray (EDX) analyses reveal that the nanofibres are amorphous and consist only of silicon oxide, generated from the reaction of CO with SiC. Nanostructure formation is catalyzed by Co particles, which act as nucleation sites and templates for 3D growth. Experiments using Si3N4 and Si in conjunction with other catalysts (e.g. Fe, Ni and CoO) yield similar results and confirm that the resulting SiOx fibres display virtually unique and remarkable radial growth starting from single metal particles. These structures exhibit morphologies comparable to radiolarian and diatom skeletons and may provide insight into the formation of microbiological systems.


References

  1. M. R. Falvo, G. J. Clary, M. R. Taylor II, V. Chi, F. P. Brooks Jr., S. Washburn and R. Superfine, Nature (London), 1997, 389, 582 CrossRef CAS.
  2. C. E. Wong, P. E. Sheehan and C. M. Lieber, Science, 1997, 277, 1971 CrossRef CAS.
  3. B. I. Yakobson and R. E. Smalley, Am. Sci., 1997, 85, 324 Search PubMed.
  4. M. M. Treacy, T. M. Ebbesen and J. M. Gibson, Nature (London), 1996, 381, 678 CrossRef CAS.
  5. P. G. Collins, A. Zettl, H. Bando, A. Thess and R. E. Smalley, Science, 1997, 278, 100 CrossRef CAS.
  6. F. F. Fan and A. J. Bard, Science, 1997, 277, 1791 CrossRef CAS.
  7. S. Ijima, Nature (London), 1991, 354, 56 CrossRef CAS.
  8. Z. Wengsieh, K. Cherrey, N. G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl and R. Gronsky, Phys. Rev. B, 1995, 51, 11299.
  9. O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier and P. Lefin, Science, 1994, 266, 1683 CAS.
  10. M. Terrones, A. M. Benito, C. Manteco-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett., 1996, 257, 576 CrossRef CAS.
  11. M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Romas, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett., 1996, 259, 568 CrossRef CAS.
  12. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie and A. Zettl, Science, 1995, 269, 966 CrossRef CAS.
  13. L. Margulis, G. Salitra, R. Tenne and M. Talianke, Nature (London), 1993, 365, 113 CrossRef CAS.
  14. R. Tenne, L. Margulis, M. Genut and G. Hodes, Nature (London), 1992, 360, 444 CrossRef CAS.
  15. M. Endo, CHEMTECH, 1988, 18, 568 CAS.
  16. H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, Nature (London), 1995, 375, 769 CrossRef CAS.
  17. W. Han, S. Fan, Q. Li and Y. Hu, Science, 1997, 277, 1287 CrossRef CAS.
  18. W. K. Hsu, M. Terrones, H. Terrones, N. Grobert, A. I. Kirkland, J. P. Hare, K. Prassides, P. D. Townsend, H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett., 1998, 284, 177 CrossRef CAS.
  19. H. Dai, J. Halner, A. G. Reizler, D. T. Colbert and R. E. Smalley, Nature (London), 1996, 384, 147 CrossRef CAS.
  20. Y. Saito, K. Hamaguchi, K. Hata, K. Uchita, Y. Tasaka, Y. Ikazaki, M. Yamura, A. Kasuya and Y. Nishina, Nature (London), 1997, 389, 554 CrossRef CAS.
  21. G. E. Gadd, M. Blackford, S. Moricca, N. Webb, J. P. Evans, A. M. Smith, G. Jacobsen, S. Leung, A. Gay and Q. Hua, Science, 1997, 277, 933 CrossRef CAS.
  22. M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of fullerenes and carbon nanotubes, Academic, San Diego, 1996 Search PubMed.
  23. T. W. Ebbesen and P. M. Ajayan, Nature (London), 1992, 358, 220 CrossRef CAS.
  24. X. K. Wang, X. W. Lin, M. Mesleh, M. F. Jarrold, V. P. Dravid, J. B. Ketterson and R. P. H. Chang, J. Mater. Res., 1995, 10, 1977 CAS.
  25. S. Iijima and T. Ichihashi, Nature (London), 1993, 363, 603 CrossRef CAS.
  26. M. T. Yacaman, M. M. Yoshida and L. Rendon, App. Phys. Lett., 1993, 62, 202 Search PubMed.
  27. M. Ge and K. Sattler, Science, 1993, 260, 515 CAS.
  28. W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton and P. J. F. Harris, Nature (London), 1995, 377, 687 CrossRef CAS.
  29. W. K. Hsu, M. Terrones, J. P. Hare, H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett., 1996, 262, 161 CrossRef CAS.
  30. D. S. Bethune, C. H. Kiang, M. S. Deveries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature (London), 1993, 363, 605 CrossRef CAS.
  31. G. D. Saunders and Y. C. Chang, Phys. Rev. B, 1992, 45, 9202 CrossRef.
  32. L. E. Brus, J. Phys. Chem., 1994, 98, 3575 CrossRef CAS.
  33. A. M. Morales and C. M. Lieber, Science, 1998, 279, 208 CrossRef CAS.
  34. C. R. Martin, Science, 1994, 266, 1961 CrossRef CAS.
  35. C. G. Wu and T. Bein, Science, 1994, 266, 1013 CrossRef CAS.
  36. S. Mann, Nature (London), 1993, 365, 499 CrossRef CAS.
  37. D. Berger, Journeys in the microspace; the art of scanning electron microscope, Columbia University Press, New York, 1996, pp. 166–168 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.