Influence of composition and glass transition temperature on the diffusion and solubility behaviour of methyl ethyl ketone-isopropyl alcohol mixtures in poly(methyl methacrylate)

(Note: The full text of this document is currently only available in the PDF Version )

Richard A. Pethrick and Kathleen E. Rankin


Abstract

The process of removal by a solvent mixture of low molar mass polymer generated as a consequence of chain scission is a critical step in electron beam lithography. The development of the image depends on a number of factors, including the composition of the solvent and the nature of the polymer. In this paper the effects of change in the composition of mixtures of methyl ethyl ketone and isopropyl alcohol, a common development solvent used in lithography, and the glass transition temperature of poly(methyl methacrylate) films on the mutual diffusion coefficient are reported. The mutual diffusion coefficient decreases and becomes asymmetric towards low volume fraction of solvent as the proportion of isopropyl alcohol in the mixture is increased. The higher glass transition temperature films are prone to exhibiting crazing on exposure to solvent. The diffusion of the mixture into the polymer film is selective and preferential for methyl ethyl ketone. Diffusion becomes complex as the content of the mixture moves towards a higher isopropyl alcohol composition. Also, there is evidence for both lowering of the glass transition temperature and re-precipitation of the polymer by the non-solvent (isopropyl alcohol). Change in the initial Tp of the films leads to small changes in the swelling rate. In the development process of electron beam resist films used in semiconductor lithography, crazing probably plays as important a role in the overall development process as simple solvent driven dissolution.


References

  1. P. C. Tsiartas, L. W. C. L. Henderson, W. D. Hinsberg, I. C. Sanchez, R. T. Bonnecaze and C. Grant Willson, Macromolecules, 1997, 30, 4656 CrossRef CAS.
  2. J. M. D. McElroy, Diffusion in Polymers, ed. P. Neogi, Marcel Dekker, New York, Basel, Hong Kong, 1996, p. 1 Search PubMed.
  3. J. Crank, The Mathematics of Diffusion, Oxford, 1985, p. 256 Search PubMed.
  4. N. A. Peppas, J. C. Wu and E. D. von Meerwell, Macromolecules, 1994, 27, 5626 CrossRef CAS.
  5. P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979 Search PubMed.
  6. A. C. Ouano and J. A. Carothers, Science and Technology of Polymer Processing, ed. N. P. Sung and N. H. Sung, MIT Press, Cambridge, MA, 1979, p. 755 Search PubMed.
  7. A. C. Ouano and J. A. Carothers, Structure–Solubility Relationships in Polymers, ed. F. W. Harris and R. B. Seymour, Academic Press, New York, 1977, p. 11 Search PubMed.
  8. A. C. Ouano, Y. O. Tu and J. A. Carothers, Polym. Prepr., 1976, 17, 329 Search PubMed.
  9. A. C. Ouano, Polymers in Electronics, ed. T. Davidson, ACS Symp. Ser., 1984, 242, 84 Search PubMed.
  10. R. A. Pethrick, Irradiation Effects on Polymers, ed. D. W. Clegg and A. A. Collyer, Elsevier Applied Science, London, 1991, p. 403 Search PubMed.
  11. V. K. Sharma, R. A. Pethrick and S. Affrossman, Polymer, 1982, 23, 1732 CAS.
  12. T. Kato, Microelectronic Polymers, ed. M. S. Htoo, Marcel Dekker, New York, 1989, p. 1199 Search PubMed.
  13. M. M. O'Toole, Microelectronic Polymers, ed. M. S. Htoo, Marcel Dekker, New York, 1989, p. 315 Search PubMed.
  14. M. J. Bowden, Materials for Microlithography, ACS Symp. Ser., 1984, 266, 71 Search PubMed.
  15. L. F. Thompson, Introduction to Microlithography, 2nd edn., ed. L. F. Thompson, C. Grant Willson and M. J. Bowden, ACS Professional Reference Books, ACS, Washington DC, 1994, p. 280 Search PubMed.
  16. K. E. Rankin and R. A. Pethrick, Microelectron. Eng., 1995, 26, 141 CrossRef.
  17. K. R. Dunham, Solid State Technol., 1971, 14(6), 41 CAS.
  18. J. Crank, The Mathematics of Diffusion, Oxford Science Publications, Oxford, 1985, p. 230 Search PubMed.
  19. J. Crank and G. S. Park, Diffusion in Polymers, ed. J. Crank and G. S. Park, Academic Press, New York, 1968, ch. 1, p. 4 Search PubMed.
  20. J. Crank and C. Robinson, Proc. R. Soc. London, Ser. A, 1951, 204, 549.
  21. R. J. Elwell, D. Hayward and R. A. Pethrick, Polym. Int., 1993, 30, 55 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.