Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique

(Note: The full text of this document is currently only available in the PDF Version )

Geraint Williams and Gary S. V. Coles


Abstract

Nanosized powders of Al2O3 , ZrO2 and SnO2 have been produced by laser ablation of ceramic samples followed by condensation in a controlled gaseous atmosphere. X-Ray powder diffraction, transmission and scanning electron microscopy have been used to investigate the morphology and structure of the materials. A study of the gas sensing characteristics of thick films prepared from these materials revealed that zirconia based sensors respond to H2 at a temperature of 100 °C, while thick films of alumina display marked changes in both resistance and capacitance as a function of relative humidity at room temperature. Nanocrystalline SnO2 sensors respond markedly to mixtures of H2 , CO and CH4 in the 100–600 °C temperature range and display sensitivity values which are higher than those obtained using SnO2 powder samples prepared via a conventional wet chemistry route. Optimisation experiments showed that sensor characteristics were influenced both by pre-treatment temperature and film thickness.


References

  1. K. Ihokura and J. Watson, The stannic oxide gas sensor–principles and applications, CRC press, Boca Raton FL, 1994 Search PubMed.
  2. C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sens. Actuators B, 1991, 3, 147 CrossRef.
  3. A. Diéguez, A. Romano-Rodríguez, J. R. Morante, U. Weimar, M. Schweizer-Berberich and W. Göpel, Sens. Actuators B, 1996, 31, 1 CrossRef.
  4. M. Schweizer-Berberich, J. G. Zheng, U. Weimar, W. Göpel, N. Bârsan, E. Pentia and A. Tomescu, Sens. Actuators B, 1996, 31, 71 Search PubMed.
  5. G. Sberveglieri, Sens. Actuators B, 1995, 23, 103 CrossRef.
  6. P. Nelli, L. E. Depero, M. Ferroni, S. Gropelli, V. Guidi, F. Ronconi, L. Sangaletti and G. Sberveglieri, Sens. Actuators B, ( 1996), 31, 89 Search PubMed.
  7. J. A. de Agapito and J. P. Santos, Sens. Actuators B, 1996, 31, 93 CrossRef.
  8. D. G. Rickerby, M. C. Horillo, J. P. Santos and P. Serrini, Nanostruct. Mater., 1997, 9, 43 CrossRef CAS.
  9. V. M. Jiménez, A. R. González-Elipe, P. Espinós, A. Justo and A. Fernández, Sens. Actuators B, 1996, 31, 29 CrossRef.
  10. T. Seiyama, N. Yamazoe and H. Arai, Sens. Actuators, 1983, 4, 85 CrossRef CAS.
  11. E. Traversa, Sens. Actuators B, 1995, 23, 135 CrossRef.
  12. G. S. V. Coles, G. Williams and B. Smith, Sens. Actuators B, 1991, 3, 7 CrossRef.
  13. L. N. Yannopoulos, Sens. Actuators, 1987, 12, 77 CrossRef CAS.
  14. R. M. A. Kocache, in Solid State Gas Sensors, ed. P. T. Moseley and B. C. Tofield, IOP Publ. Ltd., Bristol, 1987, p. 1 Search PubMed.
  15. G. S. V. Coles and G. Williams, J. Mater. Chem., 1992, 2, 23 RSC.
  16. J. F. McAleer, P. T. Moseley, J. O. W. Norris and D. E. Williams, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 1323 RSC.
  17. P. K. Clifford and D. T. Tuma, Sens. Actuators, 1982/83, 3, 233 Search PubMed.
  18. S. C. Chang, J. Vac. Sci. Technol., 1980, 17, 366 Search PubMed.
  19. V. Lantto and P. Romppainen, Surf. Sci., 1987, 192, 243 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.