Imprinting for the assembly of artificial receptors on a silica surface

(Note: The full text of this document is currently only available in the PDF Version )

Ki-oh Hwang and Tomikazu Sasaki


Abstract

Molecular imprinting of a solid surface provides a means to introduce reactive functionalities with a defined geometry on the surface. A silica surface was imprinted with a tridentate metal complex, Ru[bipy–CH[double bond, length as m-dash]NCH2CH2CH2Si(OEt)3 ]3 . The molecular imprinting process leaves three amino groups per RuII complex. The imprinted silica was reacted with various aldehydes to assemble artificial receptor sites on the surface. A metal binding site for FeII was constructed with a bipyridine-modified aldehyde that was selectively adsorbed on the surface in the presence of other two aldehydes and FeII .


References

  1. M. Grundner, D. Graf, P. O. Hahn and A. Schnegg, Solid State Technol., 1991, 34, 69 CAS.
  2. P. O. Hahn, M. Grundner, A. Schnegg and H. Jacob, in Morphology of Silicon Single Crystal Wafers, ed. C. R. Helms and B. E. Deal, Plenum Press, New York, 1988; pp. 401 Search PubMed.
  3. G. J. Pietsch, G. S. Higashi and Y. J. Chabal, Appl. Phys. Lett., 1994, 64, 3115 CrossRef CAS.
  4. G. S. Higashi and Y. J. Chabal, in Silicon Surface Composition and Morphology, ed. W. Kern, Noyes Publications, Park Ridge, NJ, 1993, pp. 433 Search PubMed.
  5. G. J. Pietsch, U. Kohler, O. Jusko, M. Henzler and P. O. Hahn, Appl. Phys. Lett., 1992, 60, 1321 CrossRef CAS.
  6. T. Engel, Surf. Sci. Rep., 1993, 18, 91 CrossRef CAS.
  7. G. J. Pietsch, U. Kohler, O. Jusko, M. Henzler and P. O. Hahn, Appl. Phys. Lett., 1992, 60, 1321 CrossRef CAS.
  8. Z. L. Gong and Z. J. Zhang, Fresenius' J. Anal. Chem., 1998, 360, 138 CrossRef CAS.
  9. N. Jaffrezic-Renault and C. Martelet, Synth. Met., 1997, 90, 205 CrossRef CAS.
  10. Z. L. Gong and Z. J. Zhang, Anal. Chim. Acta, 1997, 351, 1 CrossRef.
  11. S. Koch, P. Woias, E. Kudlich and B. Zimmerer, Sens. Actuators B: Chem., 1996, 34, 1 CrossRef.
  12. L. T. Kubota, F. Gouvea, A. N. Andrade, B. G. Milagres and G. D. Neto, Electrochim. Acta, 1996, 41, 1465 CrossRef CAS.
  13. K. J. Shea and E. A. Thompson, J. Org. Chem., 1978, 43, 4253 CrossRef CAS.
  14. K. J. Shea, E. A. Thompson, S. D. Pandey and P. S. Beauchamp, J. Am. Chem. Soc., 1980, 102, 3149 CrossRef CAS.
  15. Y. -T. Tao and Y. -H. Ho, J. Chem. Soc., Chem. Commun., 1988, 417 RSC.
  16. G. Wulff, A. Sarhan and K. Zabrocki, Tetrahedron Lett., 1973, 4329 CrossRef CAS.
  17. G. Wulff, W. Vesper and R. S. A. Grobe-Einsler, Makromol. Chem., 1977, 178, 2799 CAS.
  18. M. Lepisto and B. Sellergren, J. Org. Chem., 1989, 54, 6010 CrossRef.
  19. S. Mallik, S. D. Plunkett, P. K. Dhal, R. D. Johnson, D. Pack, D. Shnek and F. H. Arnold, New J. Chem., 1994, 18, 299 Search PubMed.
  20. T. H. Chan, M. A. Brook and T. Chaly, Synthesis, 1993, 203.
  21. S. Gould, G. F. Strouse, T. J. Meyer and B. P. Sullivan, Inorg. Chem, 1991, 30, 2942 CrossRef CAS.
  22. 4-(Aminomethyl)-4′-methyl-2,2′-bipyridine · HCl was synthesizzed from 4-(bromomethyl)-4′-methyl-2,2′-bipyridine21 and potassium phthalimide followed by hydrazinolysis in 90% yield. General procedures of Gabriel synthesis are described in M. S. Gibson and R. W. Bradshaw, Angew. Chem., Int. Ed. Engl., 1968, 7, 919 Search PubMed 1H NMR [(CD3)2SO], δ 2.66 (s, 3H, CH3), 4.28 (t, 2H, CH2), 7.87 (d, 1H), 7.90 (d, 1H), 8.68 (s, 1H), 8.77 (d, 1H), 8.88 (s, 1H), 8.90 (d, 1H), 9.08 (br t, 2H, NH2). The free base form of the amino bipyridine was obtained by a treatment of the HCl salt with an aqueous NaOH solution, followed by extraction with CH2Cl2. 1H NMR (CDCl3), δ 2.43 (s, 3H), 3.98 (s, 2H), 7.13 (d, 1H), 7.28 (d, 1H), 8.23 (s, 1H), 8.33 (s, 1H), 8.53 (d, 1H), 8.61 (d, 1H).
  23. K. -O. Hwang and T. Sasaki, Mater. Sci. Eng., 1995, C3, 137 Search PubMed.
  24. H. Irving and D. H. Meller, J. Chem. Soc., 1962, 5222 RSC.
  25. D. L. Wheeler, A. A. Campbell, G. L. Graff and G. J. Miller, J. Biomed. Mater. Res., 1997, 34, 539 CrossRef CAS.