Chemistry of interstitial molybdenum ternary nitrides MnMo3N (M=Fe, Co, n=3; M=Ni, n=2)

(Note: The full text of this document is currently only available in the PDF Version )

Silvia Alconchel, Fernando Sapiña, Daniel Beltrán and Aurelio Beltrán


Abstract

Interstitial molybdenum ternary nitrides, MnMo3N (M=Fe and Co, n=3; M=Ni, n=2), can be obtained by ammonolysis of molybdate precursors, MMoO4nH2O. A study of the influence of the preparative variables on the outcomes from this procedure is presented. Fe3Mo3N and Co3Mo3N are prepared as nearly single phases at temperatures as low as 973K, but higher temperatures are required to obtain pure samples (1073 and 1173K for Fe and Co compounds, respectively). In the case of Fe3Mo3N, moreover, a slow cooling of the samples results in segregation of impurities. The nickel nitride derivative shows a different stoichiometry, Ni2Mo3N, which results in the systematic presence of impurities. The structures of M3Mo3N (M=Fe, Co) have been refined from X-ray powder diffraction data. These nitrides crystallize in the cubic system, space group Fd3m [a=11.07633(8) and 11.02396(8) for M=Fe and Co, respectively]. The structure of Ni2Mo3N has been determined in an ab initio manner from X-ray powder diffraction data. The cell is cubic, space group P4132 [a=6.63422(4)]. Starting positional parameters were obtained by direct methods, and the structure was refined by Rietveld analysis of the data. All three nitrides are prepared as phases constituted by submicrometer homogeneous particles. They show metallic behavior, and temperature programmed oxidation studies reveal an enhanced stability for the nickel derivative in an oxygen atmosphere.


References

  1. (a) The Chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blackie Academic & Professional, Chapman & Hall, London, 1996, p. 1 Search PubMed; (b) International Symposium on Nitrides, in J. Eur. Ceram. Soc., ed. Y. Laurent and P. Verdier, 1997, vol. 17, p. 1773–2037 Search PubMed.
  2. A. T. Santhanam, in The Chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blackie Academic & Professional, Chapman & Hall, London, 1996, p. 28 Search PubMed.
  3. K. Machida and G. Adachi, in The Chemistry of Transition Metal Carbides and Nitrides, ed. S. T. Oyama, Blackie Academic & Professional, Chapman & Hall, London, 1996, p. 191 Search PubMed.
  4. (a) S. Yamanaka, H. Kawaji, K. Hotehama and M. Ohashi, Adv. Mater., 1996, 8, 771 CrossRef; (b) H. Kawaji, K. Hotehama and S. Yamanaka, Chem. Mater., 1997, 9, 2127 CrossRef CAS.
  5. Catal. Today, 1992, 15, High surface area nitrides and carbides, ed. P. W. Lednor Search PubMed.
  6. (a) J. C. Schlatter, S. T. Oyama, J. E. Metcalfe and J. M. Lambert, Ind. Eng. Chem. Res., 1988, 27, 1648 CrossRef CAS; (b) C. H. Jaggers, J. N. Michaels and A. M. Stacy, Chem. Mater., 1990, 2, 150 CrossRef CAS; (c) C. W. Colling, J. G. Choi and L. T. Thompson, J. Catal., 1996, 160, 35 CrossRef CAS and references therein.
  7. (a) C. C. Yu, S. Ramanathan, F. Sherif and S. T. Oyama, J. Phys. Chem., 1994, 98, 13 038 CrossRef CAS; (b) C. C. Yu and S. T. Oyama, J. Solid State Chem., 1995, 116, 207 CrossRef CAS; (c) C. C. Yu and S. T. Oyama, J. Mater. Sci., 1995, 30, 4037 CrossRef CAS; (d) R. Kapoor, S. T. Oyama, B. Frühberger and J. G. Chen, J. Phys. Chem. B, 1997, 101, 1543 CrossRef CAS.
  8. D. S. Bem, C. M. Lampe-Onnerud, H. P. Olsen and H.-C. zur Loye, Inorg. Chem., 1996, 35, 581 CrossRef CAS.
  9. D. S. Bem, H. P. Olsen and H.-C. zur Loye, Chem. Mater., 1995, 7, 1824 CrossRef CAS.
  10. J. D. Houmes, D. S. Bem and H.-C. zur Loye, MRS Symposium Proceedings: Covalent Ceramics II: Non-Oxides, ed. A. R. Barron, G. S. Fischman, M. A. Fury and A. F. Hepp, Materials Research Society, Boston, MA, 1993, vol. 327, p. 153 Search PubMed.
  11. D. S. Bem, C. P. Gibson and H.-C. zur Loye, Chem. Mater., 1993, X-5, 397 CrossRef.
  12. K. S. Weil and P. N. Kumta, Mater. Sci. Eng. B, 1996, 38, 109 Search PubMed.
  13. X. Z. Chen, J. L. Dye, H. A. Eick, S. H. Elder and K.-L. Tsai, Chem. Mater., 1997, 9, 1172 CrossRef CAS.
  14. P. M. de Wolf, J. Appl. Crystallogr., 1968, 1, 108 CrossRef.
  15. G. S. Smith and R. L. Synder, J. Appl. Crystallogr., 1979, 12, 60 CrossRef CAS.
  16. J. Rodriguez-Carvajal, FULLPROF Program, personal communication.
  17. (a) J. F. Berar and P. Lelann, J. Appl. Crystallogr., 1991, 24, 1 CrossRef CAS; (b) J. F. Berar, Acc. Powder Diffraction II, NIST Special Publ., 1992, 846, 63 Search PubMed.
  18. A. Le Bail, H. Duroy and J. L. Fourquet, Mater. Res. Bull., 1988, 23, 447 CrossRef CAS.
  19. G. Casacarano, C. Giacovazzo and A. Guagliardi, Acta Crystallaogr., Sect. A, 1992, 48, 859 Search PubMed.
  20. J. K. Burdett, S. Lee and T. J. McLarnan, J. Am. Chem. Soc., 1985, 107, 3083 CrossRef CAS.
  21. D. Ostermann, U. Zachwieja and H. Jacobs, J. Alloys Compd., 1992, 190, 137 CrossRef CAS.
  22. A. Gudat, P. Höhn, R. Kniep and A. Rabenau, Z. Naturforsch., Teil B, 1991, 46, 566 CAS.
  23. S. H. Elder, L. H. Doerrer, F. J. Disalvo, J. B. Parise, D. Guyomard and J. M. Tarascon, Chem. Mater., 1992, 4, 928 CrossRef CAS.
  24. S. T. Oyama, R. Kapoor, H. T. Oyama, D. J. Hofmann and E. Matijevic, J. Mater. Res., 1993, 8, 1450 CAS.
  25. V. Primo, F. Sapiña, M. J. Sanchis, R. Ibañez, A. Beltrán and D. Beltrán, Solid State Ionics, 1993, 63–65, 872 CrossRef CAS.
  26. S. Alconchel, F. Sapiña, A. Beltrán and D. Beltrán, in preparation.
Click here to see how this site uses Cookies. View our privacy policy here.