Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor

(Note: The full text of this document is currently only available in the PDF Version )

Tatsumi Ishihara, Masakazu Higuchi, Toshiaki Takagi, Masami Ito, Hiroyasu Nishiguchi and Yusaku Takita


Abstract

Preparation of CuO thin films by decomposition of self-assembled multibilayer films as a molecular template was investigated. Furthermore, the CO2 sensing property of the resultant CuO thin films on a porous BaTiO3 was investigated as a capacitive type sensor. Self-assembled bilayer films of a few 1000 layers thickness can be readily obtained by casting an aqueous suspension composed of dimethyldihexadecylammoniun bromide (DC1–16), Cu(CH3CO2)2 , hexadecylethylenediamine and poly(vinyl alcohol). Divalent copper ions (Cu2+) which are associated with two hexadecylethylenediamine molecules were arranged in the hydrophobic layer of the multibilayer film. Rapid heating to the combustion temperature of DC1–16 was desirable for removing organic molecules in the multibilayer template. Thin films of CuO can be obtained by calcination at temperatures higher than 573 K. The resultant CuO thin films were porous and consisted of fine particles. The capacitance of CuO thin films prepared from self-assembled multibilayer films as a molecular template on the BaTiO3 porous substrate exhibited a high sensitivity to CO2 , which is twice that of a conventional mixed oxide capacitor of CuO–BaTiO3 . The capacitance of CuO thin films on BaTiO3 increases with increasing CO2 concentration in the range from 100 ppm to 50% at 873 K. Consequently, it is concluded that CuO thin films on BaTiO3 were appropriate capacitive type CO2 sensors.


References

  1. Y. C. Zang, H. Tagawa, S. Asakura, J. Mizusaki and H. Narita, J. Electrochem. Soc., 1997, 144, 4345.
  2. B. Muller and P. C. Hauser, Analyst, 1996, 121, 339 RSC.
  3. H. Yokouchi, M. Matsuguchi, Y. Sadaoka and Y. Sakai, Sens. Mater., 1996, 8, 69 Search PubMed.
  4. N. Miura, Y. Yan, S. Nonaka and N. Yamazoe, J. Mater. Chem., 1995, 5, 1391 RSC.
  5. N. Imanaka, Y. Hirota and G. Adachi, Sens. Actuators, 1995, 25, 380 Search PubMed.
  6. N. Miura, S. Yao, Y. Shimizu and N. Yamazoe, J. Electrochem. Soc., 1992, 139, 1384 CAS.
  7. H. Hadano, T. Suzuki and H. Futata, Technical Digest of 5th Inter. Meet. Chem. Sensors Rome, 1994, p. 476 Search PubMed.
  8. T. Ishihara, Selective Electrode Rev., 1992, 14, 1 Search PubMed.
  9. T. Ishihara, K. Kometani, Y. Mizuhara and Y. Takita, J. Am. Ceram. Soc., 1992, 75, 613 CAS.
  10. T. Ishihara, K. Kometani, M. Hashida and Y. Takita, J. Electrochem. Soc., 1992, 138, 307.
  11. T. Ishihara, Y. Nishi, H. Nishiguchi and Y. Takita, Chem. Sensors III, ed. H. U. Anderson, M. Liu and N. Yamazoe, Proceeding volume 96–27, Electrochem. Soc., Pennington, 1997, p. 123 Search PubMed.
  12. I. Moriguchi, K. Hosoi, H. Nagaoka, I. Teraoka, Y. Teraoka and S. Kagawa, J. Chem. Soc., Faraday Trans., 1994, 90, 349 RSC.
  13. N. Kimizuka and T. Kunitake, Adv. Mater., 1996, 8, 89.
  14. T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans. 1, 1998, 84, 2987 Search PubMed.
  15. T. Ishihara, M. Kagawa, F. Hadama and Y. Takita, J. Catal., 1997, 169, 93 CrossRef CAS.
  16. N. Kimizuka, T. Maeda, T. Handa and T. Kunitake, Nihonkagakukaishi, 1997, 301 Search PubMed.
  17. P. A. Chollet, J. Phys. C: Solid State Phys., 1974, 7, 4127 CrossRef CAS.
  18. R. P. Houser, J. A. Halfen, V. G. Young, N. J. Blackburn and W. B. Tolman, J. Am. Chem. Soc., 1995, 117, 10 745 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.