Thermal behavior and texture of mesoporous zirconia obtained from anionic surfactants

(Note: The full text of this document is currently only available in the PDF Version )

E. Zhao, O. Hernández, G. Pacheco, S. Hardcastle and J. J. Fripiat


Abstract

Thermogravimetric and differential thermal analyses of mesoporous zirconias obtained from anionic surfactants by a scaffolding mechanism reveal interesting differences between the samples prepared from long-chain sulfates or sulfonates, which lose their hydration water in two steps, and those obtained from long-chain phosphates for which dehydration occurs in one step. From the temperature of the tetragonal to monoclinic transition the molar volume of ZrO2 undergoing this transformation can be calculated. From the density and from the mesoporous volume (N2 adsorption), the thickness of the wall separating the elemental volumes of the mesoporous structure can be calculated as well as the pseudo-length of the pores. The calculated surface area of the mesopore fits nicely with the measured T-plot surface area for the sample calcined at 500 °C. For the sample dried at 140 °C, the agreement is not as good, probably because of a more disordered organization. The alkyl chain is tilted by about 57±10° with respect to the normal to the wall. Upon calcination the thickness of the wall increases to a point where crystallization in monoclinic zirconia occurs. At this point the mesoporous character is lost.


References

  1. G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov and J. J. Fripiat, J. Mater. Chem., 1998, 8, 219 RSC.
  2. G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov and J. J. Fripiat, Chem. Commun., 1997, 491 RSC.
  3. M. J. Hudson and J. A. Knowles, J. Chem. Soc., Chem. Commun., 1995, 2083 RSC; J. Mater. Chem., 1996, 6, 89 Search PubMed.
  4. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 116, 10836.
  5. Q. Huo, D. L. Margoles, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Schmelka, F. Schüth and G. D. Stucky, Chem. Mater., 1996, 6, 1176.
  6. F. Schüth, Ber. Bunsen-Ges. Phys. Chem., 1995, 99, 1306.
  7. V. Ciesla, S. Schacht, G. D. Stucky, K. K. Unger and F. Schüth, Angew. Chem., Int. Ed. Engl., 1996, 35, 541 CrossRef CAS.
  8. J. S. Reddy and A. Sayari, Catal. Lett., 1996, 38, 219 CrossRef CAS.
  9. D. M. Antonelli and J. Y. Ying, Chem. Mater., 1996, 8, 874 CrossRef CAS.
  10. N. K. Raman, M. T. Anderson and C. F. Brinker, Chem. Mater., 1996, 8, 1682 CrossRef CAS.
  11. P. T. Tanev, M. Chibwe and T. J. Pinnavaia, Nature, 1996, 368, 321 CrossRef.
  12. S. A. Bagshaw, E. Prouzet and T. J. Pinnavaia, Science, 1995, 269, 1242 CrossRef.
  13. Y. Y. Huang, T. J. McCarthy and W. M. H. Sachtler, Appl. Catal. A: General, 1996, 148, 135 CrossRef CAS.
  14. S. J. Gregg and K. S. W. Singh, Adsorption, Surface Area and Porosity, Academic Press, London, 982 Search PubMed.
  15. E. P. Barrett, L. G. Joyner and P. H. Halenda, J. Am. Chem. Soc., 1951, 13, 573.
  16. Handbook of Chemistry and Physics, ed. R. C. Weast, CRC Press, Boca Raton, FL, 52nd edn., 1972, p. B156 Search PubMed.
  17. R. G. Garvie, J. Phys. Chem., 1978, 82, 219.
  18. A. Chatterjee, S. K. Pradhan, A. Dakka, M. De and D. Chakravorthy, J. Mater. Res., 1996, 9, 263.
  19. C. R. Aita, M. D. Wiggins, R. Whig, C. M. Scanlan and M. Gajdardziska-Josifovska, J. Appl. Phys., 1996, 79, 1176 CrossRef CAS.
  20. M. Gajdardziska-Josifovska and C. R. Aita, J. Appl. Phys., 1994, 79, 1315 CrossRef.
  21. P. W. M. Jacobs and F. C. Tompkins, Classification and Theory of Solid Reactions, in The Chemistry of the Solid State, ed. W. E. Garner, Butterworths Scientific Publications, London, 1955, p. 185 Search PubMed.
  22. F. Vaudry, S. Khodabandeh and M. E. Davis, Chem. Mater., 1996, 8, 1451 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.