Metal diolates: useful precursors for tailor-made oxides prepared at low temperatures

(Note: The full text of this document is currently only available in the PDF Version )

Heiko Thoms, Matthias Epple, Michael Froba, Joe Wong and Armin Reller


Abstract

Diolates of titanium and heterometallic diolates of the combinations Mg/Si, Mg/Ti, Mg/Zr and Ti/Si were prepared by reacting alcoholates [e.g. Ti(OC2H5)4 , Mg(OCH3)2 ·CH3OH] with α,ω-diols like pentane-1,5-diol. The resulting diolates are probably of polymeric nature and do not form single crystals. Structural information was obtained by infrared spectroscopy, thermal analysis and X-ray absorption spectroscopy at the Mg and Si K-edges. Thermal decomposition of such diolates led to oxides with distinct morphology at comparatively low temperatures (540–800 °C). For the heterometallic diolates the thermal decomposition in most cases led to binary, sometimes metastable oxides. The morphology of the oxides strongly depended on the nature of the precursor.


References

  1. R. Murugavel and H. W. Roesky, Angew. Chem., 1997, 109, 491.
  2. V. Augugliaro, V. Loddo, G. Marci, L. Palmisano and M. J. Lopez-Munez, J. Catal., 1997, 166, 272 CrossRef CAS.
  3. Z. Feng, W. S. Postula, C. Erkey, C. V. Philip, A. Akgerman and R. G. Anthony, J. Catal., 1994, 148, 84 CrossRef CAS.
  4. D. C. Bradley, Chem. Rev., 1989, 89, 1317 CrossRef CAS.
  5. H. Thoms, M. Epple and A. Reller, Solid State Ionics, 1997, 101–103, 79.
  6. H. Thoms, M. Epple and A. Reller, Thermochim. Acta, 1997, 302, 195 CrossRef CAS.
  7. H. Thoms, PhD Thesis, University of Hamburg, 1997.
  8. J. Wong, G. Shimkaveg, W. Goldstein, M. Eckart, T. Tanaka, Z. U. Rek and H. Tompkins, Nucl. Instrum. Methods A, 1990, 291, 243 CrossRef.
  9. M. Rowen, Z. U. Rek, J. Wong, T. Tanaka, G. N. George, I. J. Pickering, G. H. Via and G. E. Brown Jr., Synchrotron Radiat. News, 1993, 6, 25 Search PubMed.
  10. J. Wong, G. N. George, I. J. Pickering, Z. U. Rek, M. Rowen, T. Tanaka, G. H. Via, B. DeVries, D. E. W. Vaughan and G. E. Brown Jr., Solid State Commun., 1994, 92, 559 CrossRef CAS.
  11. T. Reβler, J. Phys. IV (Coll.), 1997, 7, C2 Search PubMed.
  12. J. J. Rehr, R. C. Albers and S. I. Zabinsky, Phys. Rev. Lett., 1992, 69, 3397 CrossRef CAS.
  13. E. A. Stern, M. Newville, B. Ravel, Y. Yacoby and D. Haskel, Physica B, 1995, 208–209, 117 CrossRef.
  14. D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal alkoxides, Academic Press, London, 1978 Search PubMed.
  15. H. Bertagnolli and T. S. Ertel, Angew. Chem., 1994, 106, 15 CrossRef CAS.
  16. W. H. Baur, Trans. Am. Crystallogr. Assoc., 1970, 6, 129 Search PubMed.
  17. H. Thoms, M. Epple, H. Viebrock and A. Reller, J. Mater. Chem., 1995, 5, 589 RSC.
  18. T. Yoshida, T. Tanaka, H. Yoshida, S. Takenaka, T. Funabiki, S. Yoshida and T. Murata, Physica B, 1995, 209, 581 CrossRef.
  19. P. Ildefonse, G. Calas, A. M. Flank and P. Lagarde, Nucl. Instrum. Methods B, 1995, 97, 172 CrossRef CAS.
  20. T. Mineo, M. Aihara, A. Tsutsumi and K. Yoshida, Kagaku Kogaku Ronbunshu, 1996, 2, 408 Search PubMed.
  21. H. K. Park, Y. T. Moon, D. K. Kim and C. H. Kim, J. Am. Ceram. Soc., 1996, 10, 2727.
  22. K. Y. Kim and S. B. Park, J. Chem. Eng. Jpn., 1994, 5, 657 Search PubMed.