Disk-like liquid crystals of transition metal complexes. Part 20.‡—Pursuit of chemistry to directly visualize van der Waals interactions

(Note: The full text of this document is currently only available in the PDF Version )

Kazuchika Ohta , Mayumi Ikejima , Mitsuo Moriya , Hiroshi Hasebe and Iwao Yamamoto


Abstract

This work reports on mesomorphic thermochromism caused by metal centres leading to visualization of van der Waals interactions. We succeeded in obtaining columnar liquid crystals exhibiting very interesting thermochromism by introduction of long chains into disk-like bis(glyoximato) d8 metal(ii) complexes. These long-chain-substituted NiII, PdII and PtII complexes, (CnO)8-M, containing one-dimensional metal chain change color according to the metal–metal stacking distance. With increasing temperature, the metal–metal distance increases leading to an enlargement of the band gap between the filled ndz2 valence band and the empty (n+1)pzconduction band of the central metal. Generally speaking, when mesomorphic materials are heated, the peripheral alkyl chains melt, whereas the central aromatic part remains rigid. Adjacent peripheral long chains tend to lie within the van der Waals radius at lower temperatures, which results in a shortening of the distance between the central d8 metals in the present (CnO)8-M systems. This ‘fastener effect’ of the van der Waals interaction of peripheral long chains is weakened with increasing temperature, leading to visible color changes due to the ndz2–(n+1)pz interaction in the central metal chain. The 4;mmol) and 85% potassium hydroxide (12.9 g, 185 mmol) were added and the mixture was stirred vigorously forca. 1 h and filtered to remove precipitates. 3,3′,4,4′-Tetradecyloxybenzil 5 (3.00 g, 2.83 mmol) was added to the filtrate and under a nitrogen atmosphere the mixture was refluxed with stirring for 12.5 h. To the hot reaction mixture was added potassium tetrachloroplatinate(ii) (0.64 g, 1.54 mmol) dissolved in a small amount of ethane-1,2-diol. Immediately the solution was neutralized with glacial acetic acid as confirmed by pH test paper. After neutralization, reflux was continued for more than 6 h during which dark green precipitates gradually appeared. After reflux, the hot reaction mixture was filtered and the dark green precipitate collected on filter paper. The product was dissolved in chloroform and the solvent evaporated to give dark green liquid crystals. Purification was carried out by column chromatography [silica gel, chloroform–benzene (1:1 v/v), Rf=0.70] and reprecipitation carried out by adding acetone to a hot solution of the product in chloroform to give dark green liquid crystals (0.37 g, yield: 10%).


References

  1. K. Ohta, S. Azumane, T. Watanabe, S. Tsukada and I. Yamamoto, Appl. Organomet. Chem., 1996, 10, 623 CrossRef CAS.
  2. K. Ohta, H. Hasebe, M. Moriya, T. Fujimoto and I. Yamamoto, Mol. Cryst. Liq. Cryst., 1991, 208, 43 CAS.
  3. K. Ohta, H. Hasebe, M. Moriya, T. Fujimoto and I. Yamamoto, J. Mater. Chem., 1991, 1, 831 RSC.
  4. K. Ohta, M. Moriya, M. Ikejima, H. Hasebe, T. Fujimoto and I. Yamamoto, Bull. Chem. Soc. Jpn., 1993, 66, 3553, 3559 CAS.
  5. I. Shirotani, K. Suzuki, T. Suzuki, T. Yagi and M. Tanaka, Bull. Chem. Soc. Jpn., 1992, 65, 1078 CAS.
  6. I. Shirotani, Petrotech, 1993, 16, 781 Search PubMed.
  7. I. Shirotani, Gendai Kagaku, 1987, 42 Search PubMed frontispiece, 30.
  8. I. Shirotani, Y. Inagaki, W. Utsumi and T. Yagi, J. Mater. Chem., 1991, 1, 1041 RSC.
  9. I. Shirotani, K. Suzuki and T. Yagi, Proc. Jpn. Acad., Ser. B, 1992, 68, 57 Search PubMed.
  10. H. Inokuchi, G. Saito, P. Wu, K. Seki, T. B. Tang, T. Mori, K. Imaeda, T. Enoki, Y. Higuchi, K. Inaka and N. Yasuoka, Chem. Lett., 1986, 1263 Search PubMed.
  11. H. Inokuchi, K. Imaeda, T. Enoki, T. Mori, Y. Maruyama, G. Saito, N. Okada, H. Yamochi, K. Seki, Y. Higuchi and N. Yasuoka, Nature (London), 1987, 329, 39 CAS.
  12. Z. Shi, T. Enoki, K. Imaeda, K. Seki, P. Wu, H. Inokuchi and G. Saito, J. Phys. Chem., 1988, 92, 5044 CrossRef CAS.
  13. P. Wang, T. Enoki, K. Imaeda, N. Iwasawa, H. Yamochi, H. Urayama, G. Saito and H. Inokuchi, J. Phys. Chem., 1989, 93, 5947 CrossRef CAS.
  14. K. Imaeda, T. Mitani, C. Nakano, H. Inokuchi and G. Saito, Chem. Phys. Lett., 1990, 173, 298 CrossRef CAS.
  15. J. K. Jeszuka, T. Enoki, Z. Shi, K. Imaeda, H. Inokuchi, N. Iwasawa, H. Yamochi and G. Saito, Mol. Cryst. Liq. Cryst., 1991, 196, 167.
  16. K. Ohta, H. Hasebe, H. Ema, M. Moriya, T. Fujimoto and I. Yamanoto, Mol. Cryst. Liq. Cryst., 1991, 208, 21 CrossRef CAS.
  17. H. Ema, Master Thesis, Shinshu University, Ueda, 1988, ch. 7; H. Hasebe, Master Thesis, Shinshu University, Ueda, 1991, ch. 5.
  18. K. Ohta, H. Ema, H. Muroki, I. Yamamoto and K. Matsuzaki, Mol. Cryst. Liq. Cryst., 1987, 147, 61 CrossRef CAS.
  19. K. Ohta, H. Hasebe, M. Moriya, T. Fujimoto and I. Yamamoto, Mol. Cryst. Liq. Cryst., 1991, 208, 33 CrossRef CAS.
  20. J. C. Zahner and H. G. Drickamer, J. Chem. Phys., 1960, 33, 1625 CAS.
  21. M. Tkacz and H. G. Drickamer, J. Chem. Phys., 1986, 85, 1184 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.