Stoichiometry control of SiOC ceramics by siloxane polymer functionality

(Note: The full text of this document is currently only available in the PDF Version )

Duane R. Bujalski, Stelian Grigoras, Wen-lan (nancy) Lee, Gary M. Wieber and Gregg A. Zank


Abstract

The guidelines, or empirical rules, previously described in the literature to estimate ceramic compositions from preceramic polymer compositions have been refined and quantified. Thermogravimetric and residual gas analyses of the pyrolysis of organosilsesquioxane polymers have identified the organic degradation products at various temperatures and indicated that essentially all of the silicon and oxygen atoms of these highly branched polymers are retained in the 1200 °C ceramic residue. Series of organosilsesquioxanes with systematically varied amounts of organosilsesquioxane and endcapping components were synthesized, cured, and pyrolyzed to 1200 °C under an inert atmosphere. Multiple linear regression analysis was used to quantify the relationships between the amount of carbon retained in the ceramic residues and the mole fractions of the various organic components of the preceramic polymer, allowing for retention of the silicon and oxygen of the silsesquioxane. Specifically, a phenylsilsesquioxane fragment contributes an average of 3.94 carbons to the resulting ceramic material, vinylsilsesquioxane, 1.52 carbons, methylsilsesquioxane, 0.59 carbons and a vinyldimethylsilyl endcapping group, 2.75 carbons. The utility of the model was shown by employing this information to predict a select set of candidate precursors to an SiOC with a carbon content near a desired 18 wt.% level. One of the candidate precursors (MeSiO1.5)0.84(Me2ViSiO0.5)0.16 (predicted to afford an SiOC at 18.1 wt.% carbon) was then prepared, cured, pyrolyzed and analyzed to test the accuracy of the model. The 1200 °C ceramic was found to have 18.4 wt.% carbon, indicating good agreement between the actual and predicted values.


References

  1. W. H. Atwell, G. T. Burns and G. A. Zank, in Inorganic and Organometallic Polymers and Oligomers, ed. J. F. Harrod and R. M. Laine, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991 Search PubMed.
  2. G. T. Burns, R. B. Taylor, Y. Xu, A. Zangvil and G. A. Zank, Chem. Mater., 1992, 4, 1313 CrossRef CAS.
  3. R. H. Baney, K. Eguchi and G. A. Zank, Soc. Silicon Chem. Jpn., 1996, 8, 23 Search PubMed.
  4. R. Y. Leung and M. Glazier, Ceram. Eng. Soc. Proc., 1995, 16, 209 Search PubMed.
  5. (a) A. M. Wilson, G. A. Zank, K. Eguchi, W. Xing and J. R. Dahn, J. Power Sources, 1997, 68, 195 CrossRef CAS; (b) W. Xing, A. M. Wilson, K. Eguchi, G. A. Zank and J. R. Dahn, J. Electrochem. Soc., 1997, 144, 2410 CAS; (c) W. Xing, A. M. Wilson, G. A. Zank and J. R. Dahn, Solid State Ionics, 1997, 93, 239 CrossRef CAS.
  6. G. D. Soraru, R. Campostrini, S. Maurina and F. Babonneau, J. Am. Ceram. Soc., 1997, 80, 999 CAS.
  7. K. A. Youngdahl, M. L. Hoppe, R. M. Laine, J. A. Rahn and J. F. Harrod, Appl. Organomet. Chem., 1993, 7, 674.
  8. R. A. Mantz, P. F. Jones, K. P. Chaffee, J. D. Lichtenhan, J. W. Gilman, I. M. K. Ismail and M. J. Brumeister, Chem. Mater., 1996, 8, 1250 CrossRef CAS.
  9. (a) V. Belot, R. J. P. Corriu, D. LeClercq, P. H. Mutin and A. Vioux, J. Non-Cryst. Solids, 1992, 147/148, 52; (b) F. Babonneau, L. Bois and J. Livage, J. Non-Cryst. Solids, 1992, 147/148, 280; (c) F. Babonneau, L. Bois, C.-Y. Yang and R. M. Laine, Chem. Mater., 1994, 6, 51 CrossRef CAS; (d) L. Bois, J. Maquet, F. Babonneau, P. H. Mutin and D. Bahloul, Chem. Mater., 1994, 6, 796 CrossRef CAS.
  10. G. D. Soraru, G. D'Andrea, R. Campostrini, F. Babonneau and G. Mariotto, J. Am. Ceram. Society, 1995, 78, 379 Search PubMed.
  11. V. Belot, R. J. P. Corriu, D. LeClerc, P. H. Mutin and A. Vioux, J. Non-Cryst. Solids, 1994, 176, 33 CAS.
  12. C. Liu, H. Zhang, S. Komarneni and S. G. Pantano, J. Sol–Gel Sci. Technol., 1994, 1, 141 Search PubMed.
  13. (a) F. I. Hurwitz, P. Heimann, S. C. Farmer and D. M. Hembree, J. Mater. Sci., 1993, 28, 6622 CrossRef CAS; (b) M. Hammond, E. Breval and C. G. Pantano, Ceram. Eng. Soc. Proc., 1993, 14, 947 Search PubMed; (c) E. Breval, M. Hammond and C. G. Pantano, J. Am. Ceram. Soc., 1994, 77, 3012 CAS.
  14. A. K. Singh and C. G. Pantano, J. Sol–Gel Sci. Technol., 1997, 8, 371 Search PubMed.
  15. R. J. P. Corriu, D. LeClercq, P. H. Mutin and A. Vioux, J. Sol–Gel Sci. Technol., 1997, 8, 327 Search PubMed.
  16. G. D. Soraru, J. Sol–Gel Sci. Technol., 1994, 2, 843 Search PubMed.
  17. G. T. Burns, T. P. Angelotti, L. F. Hanneman, G. Chandra and J. H. Moore, J. Mater. Sci., 1987, 22, 2609 CAS.
  18. (a) F. I. Hurwitz, P. J. Heimann, J. Z. Gyekenyesi, J. Masnovi and X. Y. Bu, Ceram. Eng. Soc. Proc., 1991, 12, 1292 Search PubMed; (b) H. Zhang and C. G. Pantano, J. Am. Ceram. Soc., 1990, 73, 958 CAS.
  19. A. M. Wilson, G. A. Zank, K. Eguchi, W. Xing, B. Yates and J. R. Dahn, Chem. Mater., 1997, 9, 1601 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.