Structure and physical properties of a hydrogen-bonded self-assembled material composed of a carbamoylmethyl substituted TTF derivative

(Note: The full text of this document is currently only available in the PDF Version )

Go Ono, Akira Izuoka, Tadashi Sugawara and Yoko Sugawara


Abstract

Crystal structures of the carbamoylmethyl substituted TTF derivative AMET are characterized by polymeric hydrogen bonding between amide groups. As a result, the TTF moieties stack in parallel even in the neutral crystal. The nu;NH absorbtions of neutral AMET at 3426 and 3184cm1 show shifts to lower wavenumber, Delta;k, of 37 and 58cm1, respectively, at 4.1GPa. Therefore the shrinkage of the NH‥O distance is estimated to be ca. 0.04 at this pressure. The pressure dependence of the IR spectra of iodine-doped samples at doping ratios of less than 45 was exactly the same as that for a neutral sample, suggesting that the hydrogen bonding pattern is not affected significantly upon doping.Although crystalline AMET is an insulator in the neutral state (sigma;rt=ca. 108 Scm1), the conductivity is enhanced by a factor of 107 upon iodine doping of 45mol (sigma;rt=1.2101 Scm1). Furthermore, the conductivity increases as a function of the external pressure, and the sigma;rt of a 5 iodine-doped sample increased three-fold at 1.0GPa. The enhanced conductivity of iodine-doped samples may be ascribed to the increase in the overlap between the donor moieties based on the shrinkage of the hydrogen bond of the carbamoylmethyl group.


References

  1. For a review see: J. R. Fredericks and A. D. Hamilton, in Comprehensive Supramolecular Chemistry, ed, J. L. Atwood, J. E. D. Davies, D. D. MacNicol and F. Vögtle, Pergamon, Oxford, 1996, vol. 9, pp. 565–594 Search PubMed.
  2. M. Jørgensen, K. Bechgaard, T. Bjørnholm, P. Sommer-Larsen, L. G. Hansen and K. Schaumburg, J. Org. Chem., 1994, 59, 5877 CrossRef.
  3. H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito and H. Inokuchi, Bull. Chem. Soc. Jpn., 1986, 59, 301 CAS.
  4. Y. Deng, A. J. Illies, M. A. James, M. L. McKee and M. Peschke, J. Am. Chem. Soc., 1995, 117, 420 CrossRef CAS.
  5. L. Leiaerowitz and A. T. Hagler, Proc. R. Soc. Lond., 1983, A388, 133 Search PubMed; C. C. F. Blake and R. W. H. Small, Acta Crystallogr., 1972, B28, 2201; Q. Gao, G. A. JeVrey, J. R. Ruble and R. K. McMullan, Acta Crystallogr., 1991, B47, 742 CAS.
  6. W. C. Hamilton, Acta Crystallogr., 1965, 18, 866 CrossRef CAS; W. A. Denne and W. H. Small, Acta Crystallogr., 1971, B27, 1094.
  7. P. Blanchard, K. Boubekeur, M. Sallé, G. Duguay, M. Jubault, A. Gorgues, J. D. Martin, E. Canadell, P. Auban-Senzier, D. Jérome and P. Batail, Adv. Mater., 1992, 4, 579 CAS; A. S. Batsanov, M. R. Bryce, G. Cooke, A. S. Dhindsa, J. N. Heaton, J. A. K. Howard, A. J. Moore and M. C. Petty, Chem. Mater., 1994, 6, 1419 CrossRef CAS For a review see: M. R. Bryce, J. Mater. Chem., 1995, 5, 1481 Search PubMed.
  8. G. Steimecke, R. Kirmse and E. Hoyer, Z. Chem., 1975, 15, 28 CAS.
  9. G. Steimecke, H.-J. Sieler, R. Kirmse and E. Hoyer, Phosphorus Sulfur, 1979, 7, 49 Search PubMed.
  10. A. Izuoka, R. Kumai and T. Sugawara, Chem. Lett., 1992, 285 CAS.
  11. A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A. Guagliadi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435 CrossRef.
  12. The DIRDIF-94 program system, P. T. Beurskens, G. Admirraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel and J. M. M. Smits, in Technical Report of the Crystallography Laboratory, 1994, University of Nijmegen, The Netherlands Search PubMed.
  13. G. Ono, M. M. Matsushita, A. Izuoka and T. Sugawara, 63rd NationalMeeting of the Chemical Society of Japan, Abstracts, 1993, p. 147 Search PubMedOther protecting groups of a thiolate anion, see: N. Svenstrup, K. M. Rasmussen, T. K. Hansen and J. Becher, Synthesis, 1994, 809 Search PubMed; J. Lau, O. Simonsoen and J. Becher, Synthesis, 1995, 521 Search PubMed.
  14. The Hydrogen Bond, ed. G. C. Pimentel and A. L. McClellan, W. H. Freeman and co., San Francisco, 1960, pp. 285–290 Search PubMed; G. A. Jeffrey and W. Saenger, Hydrogen bonding in biological structures, Springer-Verlag, 1994, New York Search PubMed.
  15. H. Inokuchi, G. Saito, P. Wu, K. Seki, T. B. Tang, T. Mori, K. Imaeda, K. Enoki, Y. Higuchi, K. Inaka and N. Yasuoka, Chem. Lett., 1986, 1263 CAS; N. Ueno, H. Kurosu, K. Seki, G. Saito, K. Sugita and H. Inokuchi, Mol. Cryst. Liq. Cryst., 1992, 218, 171 Search PubMed.
  16. I. Suzuki, Bull. Chem. Soc. Jpn., 1962, 35, 1279 CAS; T. Uno, K. Machida and Y. Saito, Bull. Chem. Soc. Jpn., 1969, 42, 897 CAS.
  17. K. Nakamoto, M. Margoshes and R. E. Rundle, J. Am. Chem. Soc., 1955, 77, 6480 CrossRef CAS.
  18. G. Araki, K. Suzuki, H. Nakayama and K. Ishii, Phys. Rev. B, 1991, 43, 12 662 CrossRef CAS.
  19. A. D. Awtrey and R. E. Connick, J. Am. Chem. Soc., 1951, 73, 1842 CrossRef CAS.
  20. D. C. Green and R. W. Allen, J. Chem. Soc., Chem. Commun., 1978, 832 RSC; M. L. Kaplan, R. C. Haddon, F. Wudl and E. D. Feit, J. Org. Chem., 1978, 43, 4642 CrossRef CAS; C. U. Pittman Jr., M. Ueda and Y. F. Liang, J. Org. Chem., 1979, 44, 3639 CrossRef.
  21. A. Andrieux, H. J. Schulz, D. Jérome and K. Bechgaard, J. Phys. Lett., 1979, 40, L-385 Search PubMed; T. Takahashi, T. Ohyama, T. Harada, K. Kanoda, K. Murata and G. Saito, in The Physics and Chemistry of Organic Superconductors, ed. G. Saito and S. Kagoshima, Springer-Verlag, Berlin, 1990, pp. 107–110 Search PubMed; P. Day, in The Physics and Chemistry of Organic Superconductors, ed. G. Saito and S. Kagoshima, Springer-Verlag, Berlin, 1990, pp. 8–14 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.