Molecular modelling of interactions at the composite interface between surface-treated carbon fibre and polymer matrices: the influence of surface functional groups

(Note: The full text of this document is currently only available in the PDF Version )

Ian Hamerton, John N. Hay, Brendan J. Howlin, John R. Jones and Shui-yu Lu


Abstract

To simulate the results of surface treatments, commonly encountered functional groups were introduced onto the surface of the carbon fibre model. The carbon fibre model used in this study is based on the single layer diagonal graphitic plane, comprising 52 six-membered rings, in a 4×13 configuration, and of 150 carbon atoms. Surface treatment was represented by the introduction of functional groups (–R): each time, a C–C bond was broken along the edge of the plane, and a pair of –R groups was added to the graphitic plane. The total number of functional groups (n) was six. The effect of these functional groups on the non-covalent bonding interactions at the composite interface between carbon fibre and epoxy resin was investigated using a previously established BLENDS method. The compatibility of the resin and fibre in this model, indicated by the interaction parameter χ(T ), was dependent upon two factors: steric bulk and electrostatic interactions. The halogen substituents show a decrease in χ(T ), as one descends the group. Maximum interaction tends to be a function of steric bulk and polarizability in this group. The alkyl (CnH2n+1) and phenyl substituents also show a decreasing trend inχ(T ) with increasing size, although the interaction parameter with methyl is anomalously low in all cases.


References

  1. J. D. H. Hughes, Composites Sci. Technol., 1991, 41, 13 Search PubMed.
  2. Z. Wu, C. U. Pittman Jr. and S. D. Gardner, Carbon, 1995, 33, 597 CrossRef CAS.
  3. D. W. McKee and V. J. Mimeault, in Chemistry and Physics of Carbon, ed. P. L. Walker Jr and P. A. Thrower, Marcel Dekker, New York, 1973, vol. 8 Search PubMed.
  4. I. Hamerton, J. N. Hay, B. J. Howlin, J. R. Jones, S. Y. Lu, G. A. Webb, M. G. Bader, A. M. Brown and J. F. Watts, Chem. Mater., 1997, 9, 1972 CrossRef CAS.
  5. Y. Da, D. Wang, M. Sun, C. Chen and J. Yue, Composites Sci. Technol., 1987, 30, 119 Search PubMed.
  6. Y. Xie and P. M. A. Sherwood, Carbon, 1994, 6, 650 CAS.
  7. W. W. Wright, Composite Polym., 1990, 3, 231 (part I) Search PubMed; 1990, 3, 258 (part II).
  8. (a) J. M. Barton, G. J. Buist, A. S. Deazle, I. Hamerton, B. J. Howlin and J. R. Jones, Polymer, 1994, 35, 4326 CrossRef CAS; (b) I. P. Aspin, J. M. Barton, G. J. Buist, A. S. Deazle, I. Hamerton, B. J. Howlin and J. R. Jones, J. Mater. Chem., 1994, 4, 385 RSC; (c) A. S. Deazle, C. R. Heald, B. J. Howlin, I. Hamerton and J. M. Barton, Polymer Preprints, Japan (Engl. Edn.), 1995, 44, E11 Search PubMed; (d) I. Hamerton, C. R. Heald and B. J. Howlin, Macromol. Theory Simul., 1996, 5, 305 CrossRef CAS; (e) A. S. Deazle, I. Hamerton, C. R. Heald and B. J. Howlin, Polym. Int., 1996, 41, 151 CrossRef CAS; (f) I. Hamerton, C. R. Heald and B. J. Howlin, Modell. Simul. Mater. Sci. Eng., 1996, 4, 151 Search PubMed; (g) R. D. Allington, D. Attwood, I. Hamerton, J. N. Hay and B. J. Howlin, Composites Sci. Technol., 1998, in the press Search PubMed.
  9. J. W. Holubka, R. A. Dickie and J. C. Cassatta, J. Adhesion Sci. Technol., 1992, 6, 243 Search PubMed.
  10. L. H. Lee, J. Adhesion, 1994, 46, 15 Search PubMed.
  11. A. R. Tiller and B. Gorella, Polymer, 1994, 35(15), 3251 CrossRef CAS.
  12. D. Attwood and P. I. Marshall, Composites, Part A, 1996, 27, 775 Search PubMed.
  13. A. Calderone, V. Parente and J. L. Bredas, Synth. Met., 1994, 67, 151 CrossRef CAS.
  14. I. Hamerton, J. N. Hay, B. J. Howlin, J. R. Jones, S. Y. Lu, G. A. Webb and M. G. Bader, J. Mater. Chem., 1997, 7, 169 RSC.
  15. B. Z. Jang, in Advanced Polymer Composites, ASM International, Ohio, 1994 Search PubMed.
  16. S. L. Mayo, B. B. Olafson and W. A. Goddard III, J. Phys. Chem., 1990, 94, 8897 CrossRef CAS.
  17. A. K. Rappé and W. A. Goddard III, J. Phys. Chem., 1991, 95, 3358 CrossRef CAS.
  18. Computational Instruments Property Prediction User's Reference, CERIUS2, v.1.6, Molecular Simulations Inc., 1994 Search PubMed.
  19. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953 Search PubMed.
  20. (a) M. Blanco, J. Comput. Chem., 1991, 12, 237 CrossRef CAS; (b) C. F. Fan, B. D. Olafson, M. Blanco and S. L. Hsu, Macromolecules, 1992, 25, 3667 CrossRef CAS.
  21. I. Hamerton, J. N. Hay, B. J. Howlin, J. R. Jones, S. Y. Lu, G. A. Webb and M. G. Bader, High Perform. Polym., 1997, 9, 281 CrossRef CAS.
  22. K. Morita, K. Murata, A. Ishitani, K. Muragama, T. Ono and A. Nakajima, Pure Appl. Chem., 1986, 58, 455 CAS.
  23. J. Shorter, in Advances in Linear Free Energy Ralationships, ed. N. B. Chapman and J. Shorter, Plenum Press, London, 1972, p. 71 Search PubMed.
  24. P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 1991 Search PubMed.
  25. D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, 1981, p. 38 Search PubMed.
  26. F. Hoecker and J. Karger-Kocsis, J. Appl. Polym. Sci., 1996, 59, 139 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.