Electronic instabilities in lithium intercalated ZrSe2

(Note: The full text of this document is currently only available in the PDF Version )

Claudia Felser, Philippe Deniard, Michael Bäcker, Thorsten Ohm, Jean Rouxel and Arndt Simon


Abstract

We have followed the evolution of the superconductingTc on intercalation of Li in ZrSe2 by means of magnetization studies at very low temperatures. To interpret the electronic structure and instabilities, we present the results of extensive LMTO-ASA band structure calculations on ZrSe2 and the idealized compound LiZrSe2 . The experimental results suggest a picture of phase segregation in the intercalated samples into regions where Li atoms are a part of the percolating cluster and regions where the Li are not. The electronic structure calculations help to understand the nature of the bonding in this system and in particular, the nature of instabilities on the Fermi surface in the intercalated compounds. In keeping with certain models for the occurrence of superconductivity in systems whose electronic structures combine localized and itinerant behaviour, the title compounds display regions of high and low dispersion in the Fermi surface. A comparison with the superconducting spinel LiTi2O4 is particularly fruitful.


References

  1. R. Brec, P. Deniard and J. Rouxel, in Progress in intercalation research, ed. W. Müller-Warmuth and R. Schöllhorn, Kluwer, Amsterdam, 1994, pp. 177–221 Search PubMed; Intercalation in layered materials, ed. M. S. Dresselhaus, NATO Advanced Series B148, Plenum, New York, 1987 and references therein Search PubMed.
  2. Y. Onuki, T. Hirai, K. Shibutami and T. Komatsubara, J. Inclusion Phenom., 1984, 2, 279 CAS.
  3. Y. Onuki, R. Inada, S. Tanuma, S. Yamanaka and H. Kamimura, J. Phys. Soc. Jpn., 1982, 51, 880 Search PubMed; Synth. Met., 1983, 5, 245 Search PubMed.
  4. P. Deniard, P. Chevalier, L. Trichet, Y. Chabre and J. Pannetier, Solid State Commun., 1987, 64, 175 CrossRef CAS.
  5. C. Berthier, Y. Chabre, P. Segransan, P. Chevalier, L. Trichet and A. Lé Méhauté, Solid State Ionics, 1981, 5, 379 CrossRef CAS.
  6. C. Berthier, Y. Chabre, P. Segransan, P. Deniard, L. Trichet and J. Rouxel, Physics and chemistry of electrons and ions in condensed matter, ed. J. V. Acrivos, N. F. Mott and A. D. Yoffe, NATO Advanced Series C130, Riedel, Dordrecht, 1985, p. 561 Search PubMed.
  7. D. W. Murphy, F. J. Di Salvo, G. W. Hull, Jr. and J. V. Waszcak, Inorg. Chem., 1976, 15, 17 CrossRef CAS.
  8. J. von Boehm and H. M. Isomaki, J. Phys. C: Solid State Phys., 1982, 15, L733 CrossRef CAS.
  9. A. Simon, A. Yoshiasa, M. Bäcker, R. W. Henn, C. Felser, R. K. Kremer and H. Mattausch, Z. Anorg. Allg. Chem., 1996, 622, 123 CrossRef CAS; A. Simon, Angew. Chem., 1997, 109, 1873; Angew. Chem., Int. Ed. Engl., 1997, 36, 1789 Search PubMed.
  10. A. Schwanitz-Schüller and A. Simon, Z. Naturforsch., 1985, 407, 10 Search PubMed.
  11. R. W. Henn, W. Schnelle, R. K. Kremer and A. Simon, Phys. Rev. Lett., 1996, 77, 374 CrossRef CAS.
  12. H. J. Mattausch, A. Simon, C. Felser and R. Dronskowski, Angew. Chem., 1996, 108, 1805; Angew. Chem., Int. Ed. Engl., 1996, 1685 Search PubMed.
  13. T. Gulden, R. W. Henn, O. Jepsen, R. K. Kremer, W. Schnelle, A. Simon and C. Felser, Phys. Rev. B, 1997, 56, 9021 CrossRef CAS.
  14. S. Deng, A. Simon and J. Köhler, Angew. Chem., 1998, 110, 664 CrossRef.
  15. D. Johrendt, C. Felser, O. Jepsen, O. K. Andersen, A. Mewis and J. Rouxel, J. Solid State Chem., 1997, 130, 254 CrossRef CAS.
  16. C. Felser, J. Alloys Compd., 1997, 61, 87 CrossRef.
  17. C. Felser, in preparation.
  18. W. Finckh, C. Felser and W. Tremel, J. Alloys Compd., 1997, 61, 97 CrossRef.
  19. C. Felser, R. Seshadri, A. Leist and W. Tremel, J. Mater. Chem., 1998, 8, 789 Search PubMed.
  20. R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys., 1990, 62, 113 CrossRef CAS.
  21. J. Labbé and J. Bok, Europhys. Lett., 1987, 3, 1225 Search PubMed.
  22. D. M. Newns, H. R. Krishnamurthy, P. C. Pattnaik, C. C. Tsuei, C. C. Chi and C. L. Kane, Phys. B, 1993, 186, 801 Search PubMed.
  23. D. C. Johnston, H. Prakash, W. H. Zachariasen and R. Viswanathan, Mater. Res. Bull., 1973, 8, 777 CrossRef CAS; D. C. Johnston, J. Low Temp. Phys., 1976, 25, 145 CAS.
  24. P. Deniard, M. Evain, J. M. Barbet and R. Brec, Mater. Sci. Forum., 1991, 363, 79 Search PubMed.
  25. M. Evain, U-Fit manual, internal report of the IMN Nantes, France, 1992.
  26. J. Rodriguez-Carvajal, Physica B, 1993, 192, 55 CrossRef CAS.
  27. P. Deniard, P. Chevalier, L. Trichet and J. Rouxel, Synth. Met., 1983, 5, 141 CAS.
  28. U. von Barth and L. Hedin, J. Phys. C, 1972, 4, 2064.
  29. O. K. Andersen and O. Jepsen, Phys. Rev. Lett., 1984, 53, 2571 CrossRef CAS; O. K. Andersen, Z. Pawlowska and O. Jepsen, Phys. Rev. B, 1986, 34, 5253 CrossRef CAS.
  30. H. L. Skriver, The LMTO method, Springer, Berlin, 1984 Search PubMed.
  31. C. J. Bradley and A. P. Cracknell, The mathematical theory of symmetry in solids, Clarendon Press, Oxford, 1972 Search PubMed.
  32. G. Krier, O. Jepsen and O. K. Andersen, unpublished results.
  33. O. Jepsen and O. K. Andersen, Z. Phys. B, 1995, 97, 35 CAS.
  34. F. Boucher, O. Jepsen and O. K. Andersen, unpublished results.
  35. S. D. Wijeyesekera and R. Hoffmann, Organometallics, 1984, 3, 949 CrossRef CAS; R. Hughbanks and R. Hoffmann, J. Am. Chem. Soc., 1983, 106, 3528 CrossRef.
  36. P. M. Lambert, P. P. Edwards and M. R. Harrison, J. Solid State Chem., 1990, 89, 345 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.