Magnetic properties of the M(PO3)3 (M=Ti, V) metaphosphates

(Note: The full text of this document is currently only available in the PDF Version )

José M. Rojo, José L. Mesa, Rafael Calvo, Luis Lezama, Roger Olazcuaga and Teófilo Rojo


Abstract

Two metaphosphates with the formula M(PO3)3 (M=Ti and V) have been synthesized and characterized. Their crystal structures consist of isolated MO6 octahedra linked through infinite [PO3 ] chains of PO4 tetrahedra. The IR and UV–VIS results for these compounds are consistent with chain structures in which the TiIII and VIII cations exhibit octahedral symmetry. The EPR spectrum of the titanium metaphosphate at 4.2 K shows a nearly Lorentzian signal centred at g=1.77, which disappears at 100 K. EPR results obtained for the doped Sc(PO3)3:0.1% TiIII metaphosphate are discussed on the basis of an effective trigonal symmetry. For the vanadium metaphosphate, the EPR spectrum exhibits a weak signal attributed to V3+ ions, with a zero-field splitting parameter D estimated at between 2 and 8 cm–1 . Magnetic measurements show ferromagnetic and antiferromagnetic interactions for the titanium and vanadium metaphosphates, respectively. A value of J/k=–0.92(2) K has been obtained by fitting the experimental magnetic curve for V(PO3)3 to an analytical expression deduced for a three-dimensional Heisenberg model.


References

  1. D. E. C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, 1974 Search PubMed.
  2. R. C. Haushalter and L. A. Mundi, Chem. Mater., 1992, 4, 31 CrossRef CAS.
  3. A. Clearfield, Chem. Rev., 1988, 88, 125 CrossRef CAS.
  4. W. R. Rapoport and C. P. Khattak, Appl. Opt., 1988, 27, 2677 CrossRef CAS.
  5. G. T. Forrest, Laser Focus World, 1989, 25, 23 Search PubMed.
  6. L. Lezama, J. M. Rojo, J. L. Pizarro, M. I. Arriortua and T. Rojo, Solid State Ionics, 1993, 63–65, 657 CrossRef CAS.
  7. J. M. Rojo, J. L. Mesa, L. Lezama and T. Rojo, J. Mater. Chem., 1997, 7, 2243 RSC.
  8. J. M. Rojo, J. L. Mesa, L. Lezama, T. Rojo, R. Olazcuaga and F. Guillen, Ann. Chim. Sci. Mater., 1998, 23, 107 CrossRef CAS.
  9. W. T. A. Harrison, T. E. Gier and G. D. Stucky, Acta Crystallogr., Sect. C, 1994, 50, 1643 CrossRef.
  10. N. Middlemiss, F. Hawthorne and C. Calvo, Can. J. Chem., 1977, 55, 1673 CAS.
  11. D. E. Appleman and K. T. Evans, Indexing and Least-Squares Refinement of Powder Diffraction Data, N.T.I.S. Document No. PB-216188, 1973 Search PubMed.
  12. A. Lecleire, M. M. Borel, A. Grandin and B. Raveau, J. Solid State Chem., 1989, 78, 220 CrossRef.
  13. K. H. Lii, J. J. Chen and S. L. Wang, J. Solid State Chem., 1989, 78, 178 CrossRef CAS.
  14. R. C. Haushalter and F. W. Lai, J. Solid State Chem., 1988, 76, 218 CrossRef CAS.
  15. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover Publications, New York, 1970 Search PubMed.
  16. Y. Chiba, K. Yamagishi and H. Ohkura, Jpn. J. Appl. Phys., 1988, 27, L1929 CAS.
  17. D. Gourier, L. Colle, A. M. Lejus, D. Vivien and R. Moncorge, J. Appl. Phys., 1988, 63, 1144 CrossRef CAS.
  18. R. L. Carlin, C. J. O'Connor and S. N. Bathia, Inorg. Chem., 1976, 15, 985 CrossRef CAS.
  19. J. H. van Vleck, The Theory of Electrical and Magnetic Susceptibilities, Oxford University Press, Oxford, 1932 Search PubMed.
  20. G. S. Rushbrooke and P. J. Wood, Mol. Phys., 1963, 6, 409.
  21. L. Lezama, K. S. Shu, G. Villeneuve and T. Rojo, Solid State Commun., 1990, 76, 449 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.