Electrochemical synthesis of TiN precursors and their conversion to fine particles

(Note: The full text of this document is currently only available in the PDF Version )

Kenichiro Nakajima and Shiro Shimada


Abstract

TiN precursors were synthesized at room temperature by galvanostatic electrolysis of a titanium plate andn-butylamine. The resulting liquid was black in color, and was converted to viscous liquid by polymerization, then to black solids by heat treatment at 200 °C in vacuum. The solid samples were characterized by IR and 1H NMR measurements, suggesting formation of butylamidotitanium.

The black solids were pyrolyzed both in vacuum and under an ammonia atmosphere at 200 to 1000 °C. The samples were characterized by XRD, TEM, and chemical analysis. Fine TiN crystallites of up to 30 nm in size were produced with the retention of free carbon and/or hydrocarbons at 800 to 1000 °C in vacuum. These impurities were drastically reduced by increasing the TiN content by pyrolysis in ammonia. Two step pyrolysis, consisting of heating at 400 °C for 12 h and successively at a fixed temperature (600, 800 and 1000 °C) for 1 h, was found to be effective in reducing impurities and producing the TiN powders at temperatures as low as 600 °C.


References

  1. A. Kato, M. Iwata, J. Hojo and M. Nagano, Yogyo-kyokai-shi, 1975, 83, 453 Search PubMed.
  2. K. Sugiyama, S. Pac, Y. Takahashi and S. Motojima, J. Electrochem. Soc., 1975, 122, 1545 CAS.
  3. G. M. Brown and L. Maya, J. Am. Ceram. Soc., 1988, 71, 78 CAS.
  4. K. Ishihara, K. Yamazaki, H. Hamada, K. Kamisato and Y. Tarui, Jpn. J. Appl. Phys., 1990, 2103 CAS.
  5. A. Katz, A. Feingold, S. Nakahara, J. Pearton, E. Lane, M. Geva, F. A. Stevie and K. Jones, J. Appl. Phys., 1992, 71, 993 CrossRef CAS.
  6. J. A. Prybyla, C.-M. Chiang and L. H. Dubois, J. Electrochem. Soc., 1993, 140, 2695 CAS.
  7. A. Intermann, H. Koerner and F. Koch, J. Electrochem. Soc., 1993, 140, 3215 CAS.
  8. J. N. Musher and R. G. Gordon, J. Mater. Res., 1996, 11, 989 CAS.
  9. K. Nakajima, S. Shimada and M. Inagaki, J. Ceram. Soc. Jpn., 1995, 103, 309.
  10. K. Nakajima, S. Shimada and M. Inagaki, J. Mater. Chem., 1996, 6, 1795 RSC.
  11. K. Nakajima and S. Shimada, Solid State Ionics, 1997, 101–103, 131 CAS.
  12. C. Rüssel and R. Zahneisen, J. Electrochem. Soc., 1992, 139, 2424.
  13. C. Rüssel, Chem. Mater., 1990, 2, 241 CrossRef.
  14. D. Seyferth and G. Mignani, J. Mater. Sci. Lett., 1988, 7, 287.
  15. D. C. Bradley and E. G. Torrible, Can. J. Chem., 1963, 41, 134 CAS.
  16. D. C. Bradley and M. H. Gitlitz, J. Chem. Soc. A, 1969, 980 RSC.
  17. U. Gerius, P. F. Hedén, J. Hedman, B. J. Lindberg, R. Manne, R. Nordberg, C. Nordling and K. Siegbahn, Phys. Scr., 1970, 2, 70 Search PubMed.
  18. T. A. Carlson, in Photoelectron and Auger spectroscopy, Plenum Press, New York, 1975, p. 351 Search PubMed.
  19. JCPDS file 38–1420.
  20. M. E. Strraumanis, G. A. Fauce and W. J. James, Acta Metall., 1967, 15, 65 Search PubMed.
  21. L. H. Dubois, B. R. Zegarski and G. S. Girolami, J. Electrochem. Soc., 1992, 139, 3603 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.