Two spin-containing fragments connected by a two-electron one-center heteroatom π spacer. A new open-shell organic molecule witha singlet ground state

(Note: The full text of this document is currently only available in the PDF Version )

Ll. Viadel, J. Carilla, E. Brillas, A. Labarta and L. Juliá


Abstract

The synthesis of 4,4-iminobis(2,2′,2″,4′,4″,6,6′,6″-octachlorotriphenylmethyl) diradical3, a stable organic magnetic molecule consisting of two spin-containing fragments linked by a nitrogen atom, is reported. Electron paramagnetic resonance (EPR) analysis in methyltetrahydrofuran solution (∼10–3 m) at low temperatures showed a typical fine structure (gxx=2.0042;gyy=2.0048;gzz=2.0027) of Δms=±1transition( | D/hc |=0.0071 cm–1; | E/hc |=0.0006 cm–1) as well as a broad (ΔHpp=7.5 G) and weak signal of Δms=±2 transition (g=4.124), due to an asymmetric and excited triplet state corresponding to an intramolecular spin–spin interaction which diminishes with decreasing temperature. It also showed a pair of small peaks, that might be associated with a weaker dipole–dipole interaction which diminishes with increasing temperature, emerging at both sides of a central and single peak due to a doublet state resonance corresponding to 2,2′,2″,4′,4″,6,6′,6″-octachloro-4-{3,5-dichloro-4-[bis(2,4,6-trichlorophenyl)methylene]cyclohexa-2,5-dienylideneamino}triphenylmethyl radical 4, obtained by smooth oxidation of 3. From magnetic susceptibility measurements of the sample in the solid, a linear four-spin model was applied to establish that the singlet is the ground state of the molecule and that two triplets (Jintra=–286±30 K, J′inter=–160±50 K) were the low-lying excited states. Organic solutions of 3 in air slowly oxidize to give 4, a much more persistent monoradical which is also obtained by a smooth oxidation of 3 with AgNO3 in CHCl3 . Cyclic voltammograms for the reduction of 3 and 4 in dimethylformamide (DMF) with tetra-n-butylammonium perchlorate exhibited three consecutive redox couples with standard potentials of –0.23, –0.58 and –0.74 V vs. SCE, indicating a reasonable stability of anions 3and32– in DMF solution.


References

  1. For reviews see: J. S. Miller, A. J. Epstein and W. M. Reiff, Chem. Rev., 1988, 88, 201 Search PubMed; Acc. Chem. Res., 1988, 21, 114 CrossRef CAS; H. Iwamura, Adv. Phys. Org. Chem., 1990, 26, 179 CrossRef CAS; D. A. Dougherty, Acc. Chem. Res., 1991, 24, 88 Search PubMed; H. Iwamura and N. Koga, Acc. Chem. Res., 1993, 26, 346 CAS; H. Kurreck, Angew. Chem., Int. Ed. Engl., 1993, 32, 1409 CrossRef CAS; J. S. Miller and A. J. Epstein, Angew. Chem., Int. Ed. Engl., 1994, 33, 385 CrossRef CAS; A. Rajca, Chem. Rev., 1994, 94, 871 CrossRef.
  2. D. Griller and K. U. Ingold, Acc. Chem. Res., 1976, 9, 13 CrossRef CAS.
  3. M. Ballester, Acc. Chem. Res., 1985, 18, 380 CrossRef CAS and references cited therein M. Ballester, Adv. Phys. Org. Chem., 1989, 25, 267 Search PubMed and references cited therein.
  4. J. Veciana, C. Rovira, O. Armet, V. M. Domingo, M. I. Crespo and F. Palacio, Mol. Cryst. Liq. Cryst., 1989, 176, 77 CAS; J. Veciana, C. Rovira, M. I. Crespo, O. Armet, V. M. Domingo and F. Palacio, J. Am. Chem. Soc., 1991, 113, 2552 CrossRef CAS; J. Carilla, L. Juliá, J. Riera, E. Brillas, J. A. Garrido, A. Labarta and R. Alcalá, J. Am. Chem. Soc., 1991, 113, 8281 CrossRef CAS; J. Veciana, C. Rovira, N. Ventosa, M. I. Crespo and F. Palacio, J. Am. Chem. Soc., 1993, 115, 57 CrossRef CAS; V. M. Domingo, J. Castañer, J. Riera and A. Labarta, J. Org. Chem., 1994, 59, 2604 CrossRef CAS; R. Chaler, J. Carilla, E. Brillas, A. Labarta, Ll. Fajarí, J. Riera and L. Juliá, J. Org. Chem., 1994, 59, 4107 CrossRef; M. Ballester, I. Pascual, C. Carreras and J. Vidal-Gancedo, J. Am. Chem. Soc., 1994, 116, 4205 CrossRef CAS.
  5. (a) J. Carilla, Ll. Fajarí, L. Juliá, J. Riera and Ll. Viadel, Tetrahedron Lett., 1994, 35, 6529 CrossRef CAS; (b) S. López, J. Carilla, Ll. Fajarí, L. Juliá, E. Brillas and A. Labarta, Tetrahedron, 1995, 51, 7301 CrossRef CAS; (c) J. Carilla, Ll. Fajarí, L. Juliá, J. Sañé and J. Rius, Tetrahedron, 1996, 52, 7013 CrossRef CAS.
  6. L. Teruel, Ll. Viadel, J. Carilla, Ll. Fajarí, E. Brillas, J. Sañé, J. Rius and L. Juliá, J. Org. Chem., 1996, 61, 6063 CrossRef.
  7. (a) P. M. Lahti, A. S. Ichimura and J. A. Berson, J. Org. Chem., 1989, 54, 958 CrossRef CAS; (b) J. Org. Chem., 1991, 56, 3030 Search PubMed; (c) C. Ling, M. Minato, P. M. Lahti and H. van Willigen, J. Am. Chem. Soc., 1992, 114, 9959 CrossRef CAS; (d) M. Minato, P. M. Lahti and H. van Willigen, J. Am. Chem. Soc., 1993, 115, 4523; (e) N. Yoshioka, P. M. Lahti, T. Kaneko, Y. Kuzumaki, E. Tsuchida and H. Nishida, J. Org. Chem., 1994, 59, 4272 CrossRef CAS.
  8. O. Armet, J. Veciana, C. Rovira, J. Riera, J. Castañer, E. Molins, J. Rius, C. Miravitlles, S. Olivella and J. Brichfeus, J. Phys. Chem., 1989, 91, 5608.
  9. Z. Galus, Fundamentals of Electrochemical Analysis, Harwood, Chichester, 1976, ch. 7, p. 9 Search PubMed; H. Lund and M. M. Baizer, Organic Electrochemistry. An Introduction and a Guide, Marcel Dekker, New York, ch. 2, p. 3 Search PubMed.
  10. H. R. Falle, G. R. Lukhurst, A. Horsefield and M. Ballester, J. Chem. Phys., 1969, 50, 258 CAS.
  11. D. C. Reitz and S. I. Weissman, J. Chem. Phys., 1960, 33, 700 CrossRef CAS.
  12. The distance between the two α-carbons has been calculated from standard angles and bond lengths, and assuming that the C–N bond length is 1.426 Å and the C–N–C angle is 108.0°.
  13. A. M. Trozzolo, R. W. Murray and E. Wasserman, J. Am. Chem. Soc., 1962, 84, 4990 CrossRef CAS.
  14. T. Mitsumori, K. Inoue, N. Koga and H. Iwamura, J. Am. Chem. Soc., 1995, 117, 2467 CrossRef CAS.
  15. R. L. Carlin, Magnetochemistry, Springer-Verlag, Berlin, Heidelberg, 1986, p. 21 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.