Influence of surface reactions and ionization gradients on junction properties of F16PcZn

(Note: The full text of this document is currently only available in the PDF Version )

Stefan Hiller, Derck Schlettwein, Neal R. Armstrong and Dieter Wöhrle


Abstract

Compared to unsubstituted phthalocyaninatozinc(ii) (PcZn), electron withdrawing fluorine atoms in hexadecafluorophthalocyaninatozinc(ii) (F16PcZn) cause a stabilization of the frontier orbitals of about 1.6 eV. This is concluded from photoelectron spectroscopy (UPS) at thin films on Au surfaces. From experiments at thin films [physical vapor deposition (PVD)] of PcZn deposited on top of F16PcZn under UHV conditions it is seen that a closed film of PcZn is formed at least within 5 nm average film thickness, that thermodynamic equilibrium between the films is achieved by charge transfer in redox reactions at the interface which, however, do not lead to a macroscopic space-charge layer. To study electrical device properties thin films of F16PcZn and PcZn were prepared in a range between 90 nm and 240 nm. Changes in electrical properties of ITO, Au|F16PcZn|metal (metal=In, Au) and ITO|F16PcZn|PcZn|Au devices have been studied in the dark and under illumination. Results of current–voltage characteristics and short-circuit photocurrent spectra of devices as prepared and measured under high vacuum (HV, 10–5–10–6 mbar) and after exposure to air are presented. In vacuum symmetrical I(U) characteristics were found for ITO|F16PcZn|Au devices. After exposure to air a decrease in dark conductivity, unsymmetrical I(U) characteristics and a considerable photovoltage (UOC) was measured under illumination. The magnitude of UOC as well as its direction can be clearly correlated with the exposure to atmosphere. This observation leads to a discussion based on a local asymmetry in O2 content as caused by slow diffusion into F16PcZn. O2 would lead to a decrease in the local majority carrier density as typically expected for organic n-type conductors. Rectification found in F16PcZn|In devices can be explained by a chemical reaction between the distinct electron acceptor F16PcZn and In as a donor. Photocurrent action spectra of devices with different thicknesses of F16PcZn layers in ITO|F16PcZn|PcZn|Au revealed detailed information about the site of charge carrier generation (photoactive area). The junction properties are discussed in detail based on the frontier orbital positions of PcZn and F16PcZn, and the work functions of the corresponding electrode materials.


References

  1. J. Simon and J.-J. Andre, in Molecular Semiconductors, Springer Verlag, Berlin, 1986 Search PubMed.
  2. J.-P. Meyer, D. Schlettwein, D. Wöhrle and N. I. Jaeger, Thin Solid Films, 1995, 258, 317 CrossRef CAS.
  3. D. Wöhrle and D. Meissner, Adv. Mater., 1991, 3, 129 CrossRef CAS.
  4. D. Wöhrle, L. Kreienhoop, G. Schnurpfeil, J. Elbe, B. Tennigkeit, S. Hiller and D. Schlettwein, J. Mater. Chem., 1995, 5, 1819 RSC.
  5. D. Wöhrle, L. Kreienhoop and D. Schlettwein, in Phthalocyanines, ed. C. C. Leznov and A. P. B. Lever, VCH Publications, 1995, vol. 4 Search PubMed.
  6. W. J. Pietro, Adv. Mater., 1994, 6, 239 CAS.
  7. A. Wilson and J. D. Wright, Mol. Cryst. Liq. Cryst., 1992, 211, 321 Search PubMed.
  8. K. Y. Law, Chem. Rev., 1993, 93, 449 CrossRef CAS.
  9. R. Signerski, J. Kalinowski, I. Davoli and S. Stizza, Phys. Status Solidi A, 1991, 125, 597 CrossRef CAS.
  10. D. Schlettwein and N. R. Armstrong, J. Phys. Chem., 1994, 98, 11771 CrossRef CAS.
  11. D. Schlettwein, N. R. Armstrong, P. A. Lee and K. W. Nebesny, Mol. Cryst. Liq. Cryst., 1994, 253, 161 Search PubMed.
  12. D. Schlettwein, D. Wöhrle, E. Karmann and U. Melville, Chem. Mater., 1994, 6, 3 CrossRef CAS.
  13. E. Karmann, J.-P. Meyer, D. Schlettwein, N. I. Jaeger, M. Anderson, A. Schmidt and N. R. Armstrong, Mol. Cryst. Liq. Cryst., 1996, 283, 283 Search PubMed.
  14. J.-P. Meyer and D. Schlettwein, Adv. Mater. Opt. Electron., 1996, 6, 239 CrossRef CAS.
  15. A. Schmidt, M. L. Anderson, P. A. Lee, N. R. Armstrong, G. Schnurpfeil, S. Hiller, D. Schlettwein and D. Wöhrle, J. Phys. Chem., submitted Search PubMed.
  16. T. L. Anderson, G. C. Komplin and W. J. Pietro, J. Phys. Chem., 1993, 97, 6577 CrossRef CAS.
  17. E. Allemann, N. Brasseur, O. Benrezzak, J. Rousseau, S. V. Kudrevich, R. W. Boyle, J.-C. Leroux, R. Gurny and J. E. van Lier, J. Pharm. Pharmacol., 1995, 47, 382 Search PubMed.
  18. J. Ouyang, K. Shigehara, A. Yamada and F. C. Anson, J. Electroanal. Chem., 1991, 297, 484 CrossRef.
  19. D. Schlettwein, K. Hesse and N. I. Jaeger, manuscript in preparation.
  20. J. M. Birchall, R. N. Haszeldine and J. O. Morley, J. Chem. Soc. C, 1970, 2667 RSC.
  21. E. D. Olsen, in Modern Optical Methods of Analysis, McGraw-Hill, New York, 1975 Search PubMed.
  22. L.-K. Chau, C. D. England, S. Chen and N. R. Armstrong, J. Phys. Chem., 1993, 97, 2699 CrossRef CAS.
  23. R. M. Hochstrasser and M. Kasha, Photochem. Photobiol., 1964, 3, 317 CrossRef CAS.
  24. A. S. Davidov, in Theory of Molecular Excitons, McGraw Hill, New York, 1962 Search PubMed.
  25. J. J. Andre, J. Simon, R. Even, B. Boudjema, G. Guillaud and M. Maitrot, Synth. Met., 1987, 18, 683 CAS.
  26. N. El-Khatib, B. Boudjema, G. Guillaud, M. Maitrot and H. Chermette, J. Less-Common Met., 1988, 143, 101 Search PubMed.
  27. S. Günster, S. Siebentritt, J. Elbe, L. Kreienhoop, B. Tennigkeit, D. Wöhrle, R. Memming and D. Meissner, Mol. Cryst. Liq. Cryst., 1992, 218, 117 Search PubMed.
  28. S. M. Sze, in Physics of Semiconductor Devices, Wiley, New York, 1981 Search PubMed.
  29. D. Briggs, in Practical Surface Analysis, Wiley, Chichester, 1990 Search PubMed.
  30. J. B. Hudson, in Surface Science—An Introduction, Butterworth/Heinemann, Stoneham, 1992 Search PubMed.
  31. E. A. Lucia and F. D. Verderame, J. Chem. Phys., 1968, 48, 2674 CrossRef CAS.
  32. A. Schmidt, L. K. Chau, A. Back and N. R. Armstrong, in Phthalocyanines, ed. C. C. Leznoff and A. P. B. Lever, VCH Publications, 1995, vol. 4 Search PubMed.
  33. D. Schlettwein, H. Graaf and D. Wöhrle, manuscript in preparation.
  34. M. Pfeiffer, K. Leo and N. Karl, J. Appl. Phys., 1996, 80, 6880 CrossRef CAS.
  35. J. Kaspar, I. Emmer and R. A. Collins, Int. J. Electron., 1994, 76, 793 CAS.
  36. R. A. Collins, A. K. Abass and M. Pfeiffer, Int. J. Electron., 1994, 76, 787 CAS.
  37. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic and S. R. Forrest, Phys. Rev. B, 1996, 54, 13748 CrossRef CAS.
  38. M. Maitrot, G. Guillaud, B. Boudjema, J. J. Andre and S. Simon, J. Appl. Phys., 1986, 60, 2396 CrossRef CAS.
  39. T. Patterson, J. Pankow and N. R. Armstrong, Langmuir, 1991, 7, 3160 CrossRef CAS.
  40. J. W. Mellor, in Comprehensive Practice on Inorganic and Theoretical Chemistry, Longmans, London, 1961, vol. 5 Search PubMed.
  41. M. Martin, J.-J. Andre and J. Simon, Appl. Phys., 1983, 54, 2792 Search PubMed.
  42. N. Balasubramaniam and A. J. Subrahmanyam, Electrochem. Soc., 1991, 138, 322 Search PubMed.
  43. CRC Handbook of Physics and Chemistry, ed. D. R. Lide, CRC Press, Boca Raton, 1995 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.