Theoretical calculations of sensitivity of deprotection reactions for acrylic polymers for 193 nm lithography

(Note: The full text of this document is currently only available in the PDF Version )

Nobuyuki N. Matsuzawa, Takeshi Ohfuji, Koichi Kuhara, Shigeyasu Mori, Taku Morisawa, Masayuki Endo, Takeshi Ohfuji, Koichi Kuhara, Shigeyasu Mori, Taku Morisawa, Masayuki Endo, , Masaru Sasago and Masaru Sasago


Abstract

The reaction energy of deprotection reactions, density of the reaction site, glass transition temperature, gas permeability, density and relative permittivity of photoresists of poly(TCDA5–RMA3–MAA2) and poly(TCDMACOOR4–TCDMACOOH6) with various protection groups were calculated. The most-enhanced exothermicity was calculated for protection groups containing an ethoxyethyl group as compared to the other protection groups: tetrahydropyranyl, tricyclodecanyl and tert-butyl. For the ethoxyethyl protection groups, a good correlation was found between the experimental sensitivity and the calculated values of the relative permittivity and the glass transition temperature of the polymers. This indicates that calculating these properties of polymers can provide a quick way to identify polymers having a high sensitivity for ArF lithography.


References

  1. T. Ogawa, J. Photopolym. Sci. Technol., 1996, 9, 379 Search PubMed.
  2. D. C. Hofer, G. Allen, G. Wallraff, H. Ito, G. Breyta, P. Brock, R. DiPietro and W. Conley, J. Photopolym. Sci. Technol., 1996, 9, 387 Search PubMed.
  3. S. Takechi, Y. Kaimoto, K. Nozaki and N. Abe, J. Photopolym. Sci. Technol., 1992, 5, 439 Search PubMed.
  4. Y. Kaimoto, K. Nozaki and S. Takechi, Proc. SPIE, 1992, 1692, 66 Search PubMed.
  5. R. D. Allen, G. M. Wallraff, R. A. DiPietro, D. C. Hofer and R. R. Kunz, J. Photopolym. Sci. Technol., 1994, 7, 507 Search PubMed.
  6. K. Nakano, K. Maeda, S. Iwasa, J. Yano, Y. Ogura and E. Hasegawa, Proc. SPIE, 1994, 2195, 194 Search PubMed.
  7. T. Ushirogouchi, N. Kihara, S. Saito, T. Naito, K. Asakawa, T. Tada and M. Nakase, Proc. SPIE, 1994, 2195, 205 Search PubMed.
  8. K. Nakano, K. Maeda, S. Iwasa, T. Ohfuji and E. Hasegawa, Proc. SPIE, 1995, 2438, 322 Search PubMed.
  9. R. D. Allen, G. M. Wallraff, R. A. DiPietro, D. C. Hofer and R. R. Kunz, Proc. SPIE, 1995, 2438, 474 Search PubMed.
  10. C. K. Ober and A. H. Gabor, J. Photopolym. Sci. Technol., 1996, 9, 1 Search PubMed.
  11. U. Schaedeli, E. Tinguely, K. Cherubini, B. Maire, A. J. Blakeney, P. Falcigno and R. R. Kunz, J. Photopolym. Sci. Technol., 1996, 9, 435 Search PubMed.
  12. N. Shida, T. Ushirogouchi, K. Asakawa and M. Nakase, J. Photopolym. Sci. Technol., 1996, 9, 457 Search PubMed.
  13. S. Takechi, M. Takahashi, A. Kotachi, K. Nozaki, E. Yano and I. Hanyu, J. Photopolym. Sci. Technol., 1996, 9, 475 Search PubMed.
  14. S. Iwasa, K. Maeda, K. Nakano, T. Ohfuji and E. Hasegawa, J. Photopolym. Sci. Technol., 1996, 9, 447 Search PubMed.
  15. T. Ohfuji, K. Maeda, K. Nakano and E. Hasegawa, Proc. SPIE, 1996, 2724, 386 Search PubMed.
  16. R. D. Allen, R. Sooriyakumaran, J. Opitz, G. M. Wallraff, G. Breyta, R. A. DiPietro, D. C. Hofer, R. R. Kunz, U. Okoroanyanwu and C. G. Willson, J. Photopolym. Sci. Technol., 1996, 9, 465 Search PubMed.
  17. T. Naito, K. Asakawa, N. Shida, T. Ushirogouchi and M. Nakase, Jpn. J. Appl. Phys., 1994, 33, 7028 CrossRef CAS.
  18. J. J. P. Stewart, J. Comput.-Aided Mol. Design, 1990, 4, 1 Search PubMed.
  19. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  20. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221 CrossRef CAS.
  21. J. J. P. Stewart, QCPE Program 455, 1983; version 6.00 Search PubMed.
  22. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989 Search PubMed.
  23. P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136, 864.
  24. W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140, 1133.
  25. J. Andzelm and E. Wimmer, J. Chem. Phys., 1992, 96, 1280 CrossRef CAS.
  26. J. Andzelm, E. Wimmer and D. R. Salahub, in The Challenge of d and f Electrons: Theory and Computation, ACS Symp. Ser., No. 394, ed. D. R. Salahub and M. C. Zerner, Am. Chem. Soc., Washington DC, 1989, p. 228 Search PubMed.
  27. J. Andzelm, in Density Functional Methods in Chemistry, ed. J. Labanowski and J. Andzelm, Springer, New York, 1991, p. 155 Search PubMed.
  28. DGAUSS is a density functional program which is part of the UNICHEM software package and is available from Oxford Molecular Group, Beaverton, OR, USA.
  29. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  30. A. D. Becke, J. Chem. Phys., 1986, 84, 4524 CrossRef CAS.
  31. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  32. A. D. Becke, J. Chem. Phys., 1988, 88, 2547 CrossRef CAS.
  33. C. Lee, R. G. Parr and W. Yang, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  34. H. F. King and A. Komornicki, J. Chem. Phys., 1986, 84, 5645 CrossRef.
  35. H. F. King, R. N. Camp and J. W. McIver, Jr., J. Chem. Phys., 1984, 80, 1171 CrossRef CAS.
  36. P. M. W. Gill, B. G. Johnson, J. A. Pople and M. J. Frisch, Chem. Phys. Lett., 1992, 197, 499 CrossRef CAS.
  37. B. G. Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys., 1993, 98, 5612 CrossRef CAS.
  38. C. W. Murray, N. C. Handy and G. J. Laming, Mol. Phys., 1993, 78, 997 CAS.
  39. N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem., 1992, 70, 560 CAS.
  40. D. A. McQusrrie, Statistical Mechanics, Harper and Row, New York, 1976 Search PubMed.
  41. J. Bicerano, Prediction of Polymer Properties, Marcel Dekker, New York, 1993 Search PubMed.
  42. L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976 Search PubMed.
  43. L. B. Kier and L. H. Hall, Molecular Connectivity in Structure Activity Analysis, Wiley, New York, 1986 Search PubMed.
  44. POLYMER is available from Molecular Simulations Inc., San Diego, CA.
  45. E. Fischer, Ber., 1909, 42, 1224 Search PubMed.
  46. L. H. Klemm, E. P. Antoniades and C. D. Lind, J. Org. Chem., 1962, 27, 519 CAS.
  47. W. P. Ratchford, Org. Synth., 1955, 3, 30.
  48. M. Rothschild, A. R. Forte, M. W. Horn and R. R. Kunz, IEEE J. Selected Topics in Quantum Electronics, 1995, 1, 916 Search PubMed.
  49. R. R. Kuntz, R. D. Allen, W. D. Hinsberg and G. M. Wallraff, Proc. SPIE, 1993, 1925, 167 Search PubMed.
  50. For this reaction, ΔErxn for the model molecule 3 was not calculated, because there is no significant differences in ΔErxn between those for the model molecules 1 and 3 as found for the hydrolysis reaction.
  51. H. A. Daynes, Proc. R. Soc. Lond., 1920, A97, 286 Search PubMed.
  52. P. R. Brown, J. L. Hallman, L. W. Whaley, D. H. Desai, M. J. Pugia and R. A. Bartsch, J. Membr. Sci., 1991, 56, 195 CrossRef CAS.
  53. R. A. Wallace, J. Appl. Phys., 1971, 42, 3121 CAS.
  54. R. E. Barker, Jr. and C. R. Thomas, J. Appl. Phys., 1964, 35, 87.
  55. For example, see reviews: (a) J. D. Ferry, Macromolecules, 1991, 24, 5237 CrossRef CAS; (b) E. D. von Meerwall, Adv. Polym. Sci., 1983, 54, 1.
Click here to see how this site uses Cookies. View our privacy policy here.