5-Amino-3-imino-1,2,6,7-tetracyano-3H-pyrrolizine: characterization of the solvent-free solid phase and interaction with ammonia and water

(Note: The full text of this document is currently only available in the PDF Version )

Vincenzo Fares, Alberto Flamini, Donatella Capitani and Roberto Rella


Abstract

The 5-amino-3-imino-1,2,6,7-tetracyano-3H-pyrrolizine (LH, C11H3N7), previously characterized as the 2:1 1-chloronaphthalene adduct, has been further investigated as a solvent-free solid phase. Strong intermolecular interactions take place in this phase, as revealed by the optical spectra of evaporated LH thin films (lambda;max=615 and 570 nm) compared to the optical spectrum of LH in solution (lambda;max=580 nm). 13C NMR spectra also support the occurrence of intermolecular attractive CN group interactions in the solid state. X-Ray diffraction patterns indicate that the controlled sublimation process of LH (Tsubl=200 °C, 10–6 mmHg) leads to films composed of highly oriented crystallites, with two main sets of diffracting planes parallel to the film surface. The refractive index of LH as an evaporated thin film has also been determined in the 400–800 nm spectral range (n=1–2). LH interacts with ammonia and/or water in the gas phase. In the first case the acid–base reaction (LH+NH3 ⇄L′·NH4+) occurs. The resulting L′ anion (L′[triple bond, length as m-dash]C11H2N7) is the 2-(5-amino-3,4-dicyano-2H-pyrrol-2-ylidene)-1,1,2-tricyanoethanide (A, lambda;max=525 nm) or the isomer 1,2,6,7-tetracyano-3,5-dihydro-3,5-diiminopyrrolizinide (B, lambda;max=680 nm), depending on the relative amount of water to ammonia in the gas phase. This reaction is driven by the hydrogen bonding of NH4+ to B and/or to water. In the second case a fast proton scrambling occurs.


References

  1. V. Fares, A. Flamini and N. Poli, J. Am. Chem. Soc., 1995, 117, 11 580 CrossRef CAS.
  2. H. Böttcher, T. Fritz and J. D. Wright, J. Mater. Chem., 1993, 3, 1187 RSC.
  3. A. J. Shaka, P. B. Baker and R. Freeman, J. Magn. Reson., 1985, 64, 547 CAS.
  4. R. R. Ernst, G. Bodenhauesen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1987, ch. 4, p. 125 Search PubMed.
  5. M. Pope and C. E. Swenberg, Electronic processes in organic crystals, Oxford University Press, New York, 1982, p. 59 Search PubMed.
  6. (a) M. Bonamico, V. Fares, A. Flamini, A. M. Giuliani and P. Imperatori, J. Chem. Soc., Perkin Trans. 2, 1988, 1447 RSC; (b) M. Bonamico, V. Fares, A. Flamini and P. Imperatori, J. Chem. Soc., Perkin Trans. 2, 1990, 121 RSC; (c) M. Bonamico, V. Fares, A. Flamini, P. Imperatori and N. Poli, J. Chem. Soc., Perkin Trans. 2, 1990, 1359 RSC; (d) V. Fares, A. Flamini and N. Poli, J Chem. Res., 1995, (S) 494; (M) 3054 Search PubMed.
  7. O. S. Heavens, in Physics of thin Films, ed. G. Hass and R. E. Thun, Academic Press, New York, 1964, p. 193 Search PubMed.
  8. E. Breitmaier and W. Voelter, 13C NMR Spectroscopy, 2nd edn., Verlag Chemie, New York, 1978, p. 111 Search PubMed.
  9. J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972, p. 226 Search PubMed.
  10. J. A. Polple, J. Chem. Phys., 1956, 24, 1111 CrossRef CAS.
  11. F. E. Condon, J. Am. Chem. Soc., 1965, 87, 4481 CrossRef CAS.
  12. V. Fares, A. Flamini and N. Poli, J Chem. Res., 1995, (S) 228; (M) 1501 Search PubMed.
  13. V. Fares and A. Flamini, to be published.
  14. (a) C. Preininger, G. J. Mohr, I. Klimant and O. S. Wolfbeis, Anal. Chim. Acta, 1996, 334, 113 CrossRef CAS; (b) A. Mills, L. Wild and Q. Chang, Mikrochim. Acta, 1995, 121, 225 CAS; (c) R. Klein and E. Voges, Fresenius J. Anal. Chem., 1994, 349, 394 CrossRef CAS; (d) A. Sansubrino and M. Mascini, Biosens. Bioelectron., 1994, 9, 207 CrossRef CAS; (e) Y. Sadaoka, Y. Sakai and M. Yamada, J. Mater. Chem., 1993, 3, 877 RSC; (f) Y. Sadaoka, Y. Sakai and Y. Murata, Talanta, 1992, 39, 1675 CrossRef CAS; (g) P. Çaǧlar and R. Narayanaswamy, Analyst, 1987, 112, 1285 RSC; (h) J. F. Giuliani, H. Wohltjen and N. L. Jarvis, Opt. Lett., 1983, 8, 54 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.