Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels

(Note: The full text of this document is currently only available in the PDF Version )

H. P. Wong, B. C. Dave, F. Leroux, J. Harreld, B. Dunn and L. F. Nazar


Abstract

Vanadium pentoxide/polypyrrole aerogel (ARG) composites have been synthesized by sol–gel routes, and investigated as cathode materials in Li batteries. The primary method utilized simultaneous polymerisation of pyrrole and vanadium alkoxide precursors. Hydrolysis of VO(OC3H7)3 using pyrrole–water–acetone mixtures yielded monolithic green–black gels with polypyrrole/V ratios ranging from 0.15 to 1.0. Supercritical drying yielded high surface (150–257 m2 g–1) aerogels with densities between 0.1 and 0.2 g cm–3 , that were of sufficient mechanical integrity to allow them to be cut without fracturing. TEM studies of the ARGs show that they are comprised of fibers similar to that of V2O5 ARGs, but with a significantly shorter chain length. The interaction between the polypyrrole (PPy) and V2O5 aerogel in the nanocomposites was probed using IR spectroscopy. Our results suggest that the inorganic and organic components strongly interact during the initial stages, thus perhaps impeding the vanadium condensation process. Hence, the PPy/V2O5 nanocomposites exhibited lower electrical conductivity with increased polypyrrole content. The addition of (NH4)2S2O8 as an oxidizing agent improved the conductivity of the nanocomposites. The deleterious effect of the conductive polymer on the bulk conductivity does not necessarily affect the electrochemical properties of these materials. Nanocomposite materials that were subjected to post-oxidative treatment show enhanced Li insertion capacity compared to the pristine ARG. The physical properties of these ‘nanocomposite aerogels’ are different from ‘microcomposites’ prepared by an alternate route, in which the oxide gel is formed in the presence of a dispersion of preformed micrometer-sized polypyrrole particles.


References

  1. F. Chaput, B. Dunn, P. Fuqua and K. Salloux, J. Non-Cryst. Solids, 1995, 188, 11 CrossRef CAS.
  2. J. Livage, Chem. Mater., 1991, 3, 578 CrossRef CAS.
  3. (a) B. Katz, W. Liu, K. Salloux, F. Chaput, B. Dunn and G. C. Farrington, Mater. Res. Soc. Symp. Proc., 1995, 369, 211 CAS; (b) D. B. Le, S. Passerini, A. L. Tipton, B. B. Owens and W. H. Smyrl, J. Electrochem. Soc., 1995, 142, L102 CAS; (c) D. B. Le, S. Passerini, J. Guo, J. Ressler, B. B. Owens and W. H. Smyrl, J. Electrochem. Soc., 1996, 143, 2101.
  4. B. Scrosati, in Solid State Electrochemistry. ed. P. G. Bruce, Cambridge University Press, Inc., Cambridge, 1995, p. 229 Search PubMed.
  5. S. Panero, E. Spila and B. Scrosati, J. Electrochem. Soc., 1996, 143, L29 CAS; K. Naoi, M. Lien and W. H. Smyrl, J. Electrochem. Soc., 1991, 138, 440 CAS.
  6. (a) M. Kanatzidis, C.-G. Wu, H. O. Marcy and C. R. Kannewurf, J. Am. Chem. Soc., 1989, 111, 4139 CrossRef CAS; (b) C.-G. Wu, D. C. DeGroot, H. O. Marcy, J. L. Schindler, C. R. Kannewurf, Y. J.-Liu, W. Hirpo and M. Kanatzidis, Chem. Mater., 1996, 8, 1992 CrossRef CAS.
  7. C.-G. Wu, M. Kanatizidis, H. O. Marcy and C. R. Kannewurf, Polym. Mater. Sci. Eng., 1989, 61, 969 Search PubMed.
  8. (a) F. Leroux, B. E. Koene and L. F. Nazar, J. Electrochem. Soc., 1996, 143, L181 CAS; (b) F. Leroux, G. R. Goward and L. F. Nazar, J. Electrochem. Soc., 1997, 144, 3886 CAS; (c) G. R. Goward, F. Leroux and L. F. Nazar, Electrochimica Acta, in press Search PubMed.
  9. B. E. Koene and L. F. Nazar, Solid State Ionics, 1996, 89, 147 CrossRef CAS.
  10. T. A. Kerr, H. Wu and L. F. Nazar, Chem. Mater., 1996, 8, 2005 CrossRef CAS; L. F. Nazar, H. Wu and W. P. Power, J. Mater. Chem., 1995, 5, 1985 RSC.
  11. B. C. Dave, B. Dunn, F. Leroux, L. F. Nazar and H. P. Wong, Mater. Res. Soc. Symp Proc., Better Ceramics Through Chemistry VII, 1996, 435, 611 Search PubMed.
  12. S. Maeda and S. P. Armes, J. Colloid Interface Sci., 1993, 159, 257 CrossRef CAS; S. Maeda and S. P. Armes, J. Mater. Chem., 1994, 4, 935 RSC; S. Kuwabata, A. Kishimoto, T. Tanaka and H. Yoneyama, J. Electrochem. Soc., 1994, 141, 10 CAS; A. H. Gemeay, H. Nishiyama, S. Kuwabata and H. Yoneyama, J. Electrochem Soc., 1995, 142, 4190 CAS.
  13. W. A. Wampler, K. Rajeshwar, R. G. Pethe, R. C. Hyer and S. C. Sharma, J. Mater. Res., 1995, 10, 1811 CAS.
  14. R. E. Myers, J. Electron. Mater., 1986, 15, 61 Search PubMed.
  15. J. Lei, Z. Cai and C. R. Martin, Synth. Met., 1992, 46, 53 CrossRef CAS; J. Lei, Z. Cai and C. R. Martin, ibid., 1992, 48, 301 Search PubMed.
  16. M. R. Bond, R. S. Czernuszewicz, B. C. Dave, Q. Yan, M. Mohan, R. Verastegue and C. Carrano, Inorg. Chem., 1995, 34, 5857 CrossRef CAS.
  17. J.-M. Savariault, D. Lafargue, J.-L. Parise and J. Galy, J. Solid State Chem., 1992, 97, 169 CAS.
  18. Y.-J. Liu, D. C. DeGroot, J. L. Schindler, C. R. Kannewurf and M. G. Kanatzidis, J. Chem. Soc., Chem. Commun., 1993, 593 RSC.
  19. E. Ruiz-Hitzky and B. Casal, J. Chem. Soc., Faraday Trans., 1986, 82, 1597 Search PubMed.
  20. T. Yao, Y. Oka and N. Yamamoto, Mater. Res. Bull., 1992, 27, 669 CrossRef CAS; P. Aldebert, N. Baffier, N. Gharbi and J. Livage, Mater. Res. Bull., 1981, 16, 669 CAS.
  21. J. Lemerle, L. Nejem and J. Lefebvre, J. Chem. Res., 1978, 5301 Search PubMed.
  22. B. Dunn, J. Herreld, F. Leroux, L. F. Nazar and K. Salloux, manuscript in preparation.
Click here to see how this site uses Cookies. View our privacy policy here.