Synthesis and structure of microporous layered tin(IV) sulfide materials

(Note: The full text of this document is currently only available in the PDF Version )

Tong Jiang, Alan Lough, Geoffrey A. Ozin, Robert L. Bedard and Robert Broach


Abstract

Synthetic methods have been developed which yield large single crystals and highly crystalline phase-pure microporous layered SnS-n materials. This allows study of the structure–property–function relations of these materials. The tin sulfide layer of the SnS-1 structure type contains hexagonally shaped 24-atom rings which are constituted by six Sn3S4 broken-cube cluster building units, linked together by double bridge Sn(µ-S)2Sn sulfur bonds. The SnS-3 structure type contains elliptically shaped 32-atom rings which are also constructed from six Sn3S4 broken-cube clusters. However, they are linked by double bridge Sn(µ-S)2Sn sulfur bonds as well as tetrahedral edge-bridging Sn(µ-S2SnS2)Sn spacer units. The SnS-1 structure type [A2Sn3S7 ] was obtained in the presence of A+=Et4N+ , DABCOH+ (protonated 1,8-diazabicyclooctane), and a mixed template system of NH4+ /Et4N+ , while the SnS-3 structure type [A2Sn4S9 ] emerged in the presence of A+=Prn4N+ and Bun4N+ . Various SnS-1 and SnS-3 structures are examined and compared in relation to the size/shape of constituent template cations. A particular kind of structure-directing function was observed, that is, larger template molecules create larger void spaces within and between the tin sulfide sheets. Unique framework flexibility was discovered for both structure types. In order to accommodate the size/shape changes of templates, the flexible porous tin(iv) sulfide layers are able to undergo a certain degree of elastic deformation to alter the architecture of void spaces within and between the layers, rather than forming a completely new porous structure type. This is believed to be responsible for the relatively small number of structure types so far discovered for tin(iv) sulfide-based microporous layered materials compared to the myriad of three-dimensional open-framework structure types found for the zeolites and aluminophosphates. The observed differences among the various SnS-1 or SnS-3 structures is significant and has resulted in distinct adsorption behavior towards guest molecules. The TPA-SnS-3 framework is also found to be pressure sensitive. This all bodes well for envisaged chemical sensor applications for this class of porous materials.


References

  1. (a) D. W. Breck, ZeoliteMolecular Sieves: Structure, Chemistry and Use, Wiley and Sons, London, 1974 Search PubMed; (b) S. M. Csicsery, Chem. Br., 1985, 21, 473 Search PubMed; (c) G. A. Ozin, Adv. Mater., 1992, 4, 612 CrossRef CAS.
  2. (a) W. S. Sheldrick and M. Wachhold, Angew. Chem., Int. Ed. Engl., 1997, 36, 206 CrossRef CAS; (b) C. L. Bowes and G. A. Ozin, Adv. Mater., 1996, 8, 13 CAS; (c) M. G. Kanatzidis, Chem. Mater., 1990, 2, 353 CrossRef CAS.
  3. (a) R. L. Bedard, L. D. Vail, S. T. Wilson and E. M. Flanigen, US Pat., 1989, 4 800 761 Search PubMed; (b) R. L. Bedard, L. D. Vail, S. T. Wilson and E. M. Flanigen, US Pat., 1990, 4 933 068 Search PubMed; (c) R. L. Bedard, S. T. Wilson, L. D. Vail, J. M. Bennett and E. M. Flanigen, in Zeolites: Facts, Figures, Future, ed. P. A. Jacobs and R. A. van Santen, Stud. Surf. Sci. Catal., vol. 49, part A, Elsevier Science Publishers B.V., Amsterdam, 1989 Search PubMed.
  4. (a) G. A. Ozin, in Materials Chemistry, an Emerging Subdiscipline, ACS Symp., Washington, 1992, ed. L. Interrante, Adv. Chem. Ser., ACS, Washington, DC, 1995, 245, 335 Search PubMed; (b) M. A. Reed, Sci. Am., 1993, 118 Search PubMed; (c) R. L. Bedard, G. A. Ozin, H. Ahari, C. L. Bower and D. Young, US Pat., 1997, 5 594 263 Search PubMed.
  5. J. B. Parise, Y. Ko, J. Rijssenbeek, D. M. Nellis, K. Tan and S. Koch, J. Chem. Soc., Chem. Commun., 1994, 527 RSC.
  6. G. A. Marking and M. G. Kanatzidis, Chem. Mater., 1995, 7, 1915 CrossRef CAS.
  7. T. Jiang, A. J. Lough, G. A. Ozin, R. L. Bedard and D. Young, Chem. Mater., 1995, 7, 245 CrossRef CAS.
  8. (a) J. J. Mullin, Crystallization, Butterworths, London, 1961 Search PubMed; (b) I. V. Markov, Crystal Growth for Beginners, World Scientific, New Jersey, 1995 Search PubMed; (c) R. A. Laudise, The Growth of Single Crystals, Prentice-Hall, New Jersey, 1970 Search PubMed.
  9. R. M. Barrer, in Zeolite Synthesis, ed. M. L. Occelli and H. E. Robson, ACS Symposium Ser. 398, American Chemical Society, Washington, DC, 1989 Search PubMed.
  10. P. A. Jacobs, in Zeolite Microporous Solids; Synthesis, Structure and Reactivity, ed. E. G. Derouane, F. Lemos, C. Naccache and F. R. Ribeiro, NATO ASI Series, Ser. C, vol. 352, Kluwer Academic Publishers, Dordrecht, 1992 Search PubMed.
  11. (a) T. Jiang and G. A. Ozin, Adv. Mater., in press Search PubMed; (b) T. Jiang, PhD Thesis, University of Toronto, 1997; (c) T. Jiang, G. A. Ozin and R. L. Bedard, Adv. Mater., 1994, 6, 860 CrossRef CAS.
  12. J. Robertson, J. Phys. C: Solid State Phys., 1979, 12, 4753 CrossRef CAS.
  13. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper & Row, New York, 1983, ch. 6 Search PubMed.
  14. With respect to the high R values for the TEA-SnS-1 SC XRD structure refinement, and the goodness-of-fit between the observed and simulated PXRD patterns of the material. In this particular structure determination the origin of the high wR2 most likely arises from the fact that the crystals were of fairly poor quality; that is, a weak diffractor and of high mosaicity. The weak reflections which were measured with high statistical error were rejected from the least-squares refinement but were included in the final calculation of wR2. Furthermore, one of the templates in the structure is disordered and there is expected to be some contribution in the framework from fragmentation of the tetraethylammonium template in a 150 °C hydrothermal synthesis. The refinement is, however, quite sufficient to discuss the overall framework structure of the microporous layered tin sulfide but not the details of their bond lengths and angles. It should be mentioned that considering neither charge-balancing tetraethylammonium template cations nor physisorbed/chemisorbed water guests were included in the calculation of the PXRD pattern of the TEA-SnS-1 structure, the goodness-of-fit between the observed and simulated patterns is remarkably good, and within the limits of the model presented quite acceptable for the purpose used in this study.
  15. (a) R. Szostak, Molecular Sieves: Principles of Synthesis and Identification, Van Nostrand Reinhold, New York, 1989, ch. 2 Search PubMed; (b) R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982 Search PubMed; (c) Zeolite Synthesis, ed. M. L. Occelli and H. E. Robson, ACS Symposium Series 398, American Chemical Society, Washington DC, 1989 Search PubMed; (d) M. E. Davis, Chem. Mater., 1992, 4, 756 CrossRef CAS; (e) M. E. Davis, Acc. Chem. Res., 1993, 26, 111 CrossRef CAS.
  16. (a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. C. Beck, Nature (London), 1992, 359, 710 CrossRef CAS; (b) S. Mann and G. A. Ozin, Nature (London), 1996, 382, 313 CrossRef CAS.
  17. K. Tan, Y. Ko and J. B. Parise, Acta Crystallogr., Sect. C, 1995, 51, 398 CrossRef.
  18. W. S. Sheldrick, Z. Anorg. Allg. Chem., 1988, 562, 23 CrossRef CAS.
  19. (a) D. R. Corbin, L. Abrams, G. A. Johns, M. M. Eddy, W. T. A. Harrison, G. D. Stucky and D. E. Cox, J. Am. Chem. Soc., 1990, 112, 4821 CrossRef CAS; (b) C. A. Fyfe, H. Strobl, G. Kokotailo, G. J. Kennedy and G. E. Barlow, J. Am. Chem. Soc., 1988, 110, 3373 CrossRef CAS.
  20. (a) H. Ahari, C. L. Bowes, T. Jiang, A. Lough, G. A. Ozin, R. L. Bedard, S. Petrov and D. Young, Adv. Mater., 1995, 7, 375 CrossRef CAS; (b) G. A. Ozin, Supramol. Chem., 1995, 6, 125 CAS; (c) G. A. Ozin, C. L. Bowes, T. Jiang, A. Lough, S. Petrov, G. Vouk, A. Verma and D. Young, Electrical Sieves for Molecular Recognition, in Molecular Recognition and Inclusion, ed. A. Coleman, Kluwer Academic, Dordrecht, The Netherlands, 1997 Search PubMed.
  21. (a) B. Palosz, W. Steurer and H. Schulz, Acta Crystallogr., Sect. B, 1990, 46, 449 CrossRef; (b) B. Palosz, W. Palosz and S. Gierlotka, Acta Crystallogr., Sect. C, 1986, 42, 653 CrossRef; (c) A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals, John Wiley & Sons, New York, 1969 Search PubMed.
  22. J. Gopalakrishanan, Chem. Mater., 1995, 7, 1267.
  23. G. M. Sheldrick, SHELXTL'PC, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, 1994.
  24. A. J. M. Duisenberg, J. Appl. Crystallogr., 1992, 25, 92 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.