Intermediates in the formation of microporous layered tin(IV) sulfide materials

(Note: The full text of this document is currently only available in the PDF Version )

Tong Jiang, Alan Lough, Geoffrey A. Ozin and Robert L. Bedard


Abstract

The formation pathway of microporous layered tin(iv) sulfides A2Sn3S7 and A2Sn4S9 (A=cation), respectively denoted SnS-1 and SnS-3, synthesized from elemental Sn and S sources in the presence of templates and mineralizers has been studied. Three types of reaction intermediates, dimeric [Sn2S6 ]4– , polysulfides [Sn(S4)3 ]2– /[Sn(S4)2(S6)]2– and thiosulfate [S2O3 ]2– , have been isolated and characterized by single crystal X-ray diffraction structure analysis. UV–VIS and 119Sn NMR studies of mother-liquors of representative SnS-n systems indicate that the dimeric [Sn2S6 ]4– anion is the predominant solution tin-containing species and a likely basic building unit for the SnS-n frameworks. The role of template cations has also been examined. The pH dependent condensation–polymerization of the dimeric [Sn2S6 ]4– precursor in the presence of template cations is believed to be responsible for the formation of the SnS-n structures. The dissolution and redox reactions of the elemental Sn metal and S8 powders are found to be extremely sensitive to pH, mineralizers and temperature. Reagents, such as sulfide, fluoride, hydroxide and amines that can react with tin, sulfur and various tin sulfide and polysulfide intermediates are good mineralizers. To produce large single crystals of the SnS-n materials, the concentration and strength of mineralizers need to be kept low, however, to prepare phase pure materials, the presence of excess mineralizer is required. In general, amine templates are strong mineralizers for tin metal particles, presumably through coordination to various tin polysulfide and sulfide intermediates. As a result, amine templates/mineralizers provide cleaner and smaller product crystals under reaction conditions that are similar to those used with tetraalkylammonium hydroxide templates. Surprisingly, it was found that (DABCOH)2Sn3S7 , denoted DABCOH-SnS-1, can be formed using ‘very soft chemistry’ at room temperature and atmospheric pressure conditions, from an aqueous solution of [Sn2S6 ]4– simply by the precise control of pH. The hydrothermal reaction conditions that are generally employed in the synthesis of SnS-n materials only serve to digest the starting material.


References

  1. (a) T. Jiang, A. L. Lough, G. A. Ozin, D. Young and R. L. Bedard, Chem. Mater., 1995, 7, 245 CrossRef CAS; (b) H. Ahari, C. L. Bowes, T. Jiang, A. L. Lough, G. A. Ozin, R. L. Bedard, S. Petrov and D. Young, Adv. Mater., 1995, 7, 375 CrossRef CAS; (c) T. Jiang, Ph. D. Thesis, University of Toronto, 1997.
  2. R. E. Melendez, C. V. K. Sharma, M. J. Zaworotko, C. Bauer and R. D. Rogers, Angew. Chem., Int. Ed. Engl., 1996, 35, 2213 CrossRef CAS.
  3. J. Gopalakrishanan, Chem. Mater., 1995, 7, 1267.
  4. C. L. Bowes, W. U. Huynh, S. J. Kirkby, A. Malek, G. A. Ozin, S. Petrov, M. Twardowski, D. Young, R. L. Bedard and R. Broach, Chem. Mater., 1996, 8, 2147 CrossRef CAS; C. L. Bowes, A. J. Lough, S. J. Kirkby, G. A. Ozin, S. Petrov, M. Twardowski and D. Young, Chem. Ber., 1996, 129, 283 CAS; A. Loose and W. S. Sheldrick, Verlag der Zeitschrift fur Naturforschung, 1997, 687 Search PubMed and references cited therein.
  5. T. Jiang, G. A. Ozin and R. L. Bedard, Adv. Mater., in press Search PubMed; Adv. Mater., 1994, 6, 860 Search PubMed.
  6. (a) C. Brevard and P. Granger, Handbook of High Resolution Multinuclear NMR, John Wiley & Sons, New York, 1981 Search PubMed; (b) J. Emsley, The Elements, Oxford University Press, 1991 Search PubMed; (c) P. G. Harrison, in Chemistry of Tin, Blackie, Glasgow, 1989 Search PubMed; (d) J. Mason, Multinuclear NMR, Plenum, New York, 1987 Search PubMed; (e) I. D. Gay, C. H. Jones and C. V. K. Sharma, J. Magn. Reson., 1989, 84, 501 CAS.
  7. C. Mundus, G. Taillades, A. Pradel and M. Ribes, Solid State Nucl. Magn. Reson., 1996, 7, 141 CrossRef CAS.
  8. D. Dakternieks, H. Zhu, D. Masi and C. Mealli, Inorg. Chem., 1992, 31, 3601 CrossRef CAS; K. B. Dillon and A. Marshall, J. Chem. Soc., Dalton Trans., 1984, 1245 RSC.
  9. D. Young, unpublished work, personal communication.
  10. W. S. Sheldrick, personal communication.
  11. B. Krebs, Angew. Chem. Int. Ed. Engl., 1983, 22, 113 CrossRef.
  12. H. Schumann, Reaction of Elemental Sulfur with Inorganic, Organic and Metal Organic Compounds,inSulfur in Organic and Inorganic Chemistry, ed. A. Senning, Marcel Dekker, Inc., New York, 1972 Search PubMed.
  13. P. P. Paul, T. B. Rauchfuss and S. R. Wilson, J. Am. Chem. Soc., 1993, 115, 3316 CrossRef CAS; E. Ramli, T. B. Rauchfuss and C. L. Stern, J. Am. Chem. Soc., 1990, 112, 4043 CrossRef CAS.
  14. D. Dev, E. Ramli, T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 1991, 30, 2514 CrossRef CAS.
  15. A. K. Verma, T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 1995, 34, 3316.
  16. (a) S. Licht, J. Electrochem. Soc., 1987, 134, 2137 CAS; 1988, 135, 2971; (b) W. F. Giggenbach, Inorg. Chem., 1974, 13, 1724 CrossRef CAS.
  17. A. Müller, J. Schimanski, M. Römer, H. Bögge, W. Baumann, W. Eltzner, E. Krickemeyer and U. Billerbeck, Chimia, 1985, 39, 25.
  18. L. Cambi, US Pat., 3 427 126, 1963 Search PubMed.
  19. H. Ahari, C. L. Bowes, N. Coombs, Ö. Dag, T. Jiang, A. Lough, G. A. Ozin, S. Petrov, I. Sokolov, A. K. Verma, G. Vovk and D. Young, Microgravity Sci., February, 1997 Search PubMed; H. Ahari, R. L. Bedard, C. L. Bowes, N. Coombs, Ö. Dag, T. Jiang, A. Lough, G. A. Ozin, S. Petrov, I. Sokolov, A. K. Verma, G. Vovk and D. Young, Nature (London), 1997, 388, 857 Search PubMed; Ö. Dag, H. Ahari, N. Coombs, T. Jiang, P. Aroca-Ouellette, S. Petrov, I. Sokolov, A. K. Verma, G. Vovk, D. Young, R. L. Bedard and G. A. Ozin, Adv. Mater., 1979, 9, 1133 CrossRef CAS.
  20. (a) B. M. Lok, T. R. Cannan and C. A. Messina, Zeolites, 1983, 3, 282 CrossRef CAS; (b) D. W. Lewis, C. R. Catlow and J. M. Thomas, Chem. Mater., 1996, 8, 1112 CrossRef CAS; (c) D. W. Lewis, C. M. Freeman and C. R. A. Catlow, J. Phys. Chem., 1995, 99, 11 194 CrossRef CAS; (d) C. J. Brinker, Curr. Opin. Solid State Mater. Sci., 1996, 1, 798 CrossRef CAS; (e) R. F. Lobo, S. I. Zones and M. E. Davis, J. Inclusion Phenom. Mol. Recognit., 1995, 21, 47 CAS.
  21. S. L. Burkett and M. E. Davis, in Advances in Porous Materials, ed. S. Komarneni, D. M. Smith and J. S. Beck, Materials Research Society, Pittsburgh, 1995, p. 3 Search PubMed.
  22. S. L. Burkett and M. E. Davis, J. Phys. Chem., 1994, 98, 4647 CrossRef CAS.
  23. G. A. Marking and M. G. Kanatzidis, Chem. Mater., 1995, 7, 1915 CrossRef CAS.
  24. C. L. Bowes, PhD Thesis, University of Toronto, 1996.
  25. W. S. Braunbeck and H.-G. Braunbeck, Z. Naturforsch. Teil B, 1990, 45, 1643.
  26. R. J. Francis, S. J. Price, J. S. O. Evans, S. O'Brien and D. O'Hare, Chem. Mater., 1996, 8, 2102 CrossRef CAS.
  27. R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982 Search PubMed.
  28. G. M. Sheldrick, SHELXTL/PC, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.