Fluence and current density dependence of silver nanocluster dimensions in ion-implanted fused silica

(Note: The full text of this document is currently only available in the PDF Version )

Marta Antonello, George W. Arnold, Giancarlo Battaglin, Renzo Bertoncello, Elti Cattaruzza, Paolo Colombo, Giovanni Mattei, Paolo Mazzoldi and Fiorella Trivillin


Abstract

Implantation of suitable metal ions in glass substrates leads to the formation of nanometer-size colloidal particles in a thin surface layer. The non-linear optical properties of such colloids, in particular the enhancement of optical Kerr susceptibility, suggest that the ion implantation technique may play an important role for the production of all-optical switching devices. In spite of the very large interest due to possible applications in device construction, processes governing the chemical and physical interactions between the dielectric host and the implanted metal are far from being completely understood. It is known that the formation of these particles in glasses is governed by the chemical reactivity of the substrates with the implanted ions, by the metal concentration and by its mobility. In this work, where Ag-implanted silica samples are investigated, a particular emphasis is given to the study of the dependence of the silver cluster dimensions on the ion fluence and ion current density. Silver is present in the matrix as metallic nanoclusters and the in-depth distribution of the cluster dimensions is strongly dependent on the ion current and fluence. Higher current densities favour a silver concentration increase close to the depth of maximum radiation damage. In spite of the little differences of silver total amount in the four samples, the shapes of optical absorption spectra show peculiar features strongly related to size and concentration of the silver metallic clusters.


References

  1. E. M. Vogel, J. Am. Ceram. Soc., 1989, 72, 719 CAS.
  2. F. Hache, D. Ricard and C. Flytzanis, J. Opt. Soc. Am. B, 1986, 3, 1647 CrossRef CAS.
  3. Y. Fainman, J. Ma and S. H. Lee, Mater. Sci. Rep., 1993, 9, 53 Search PubMed.
  4. H. Rissel and I. Ruge, in Ion Implantation, J. Wiley and Sons, 1986 Search PubMed.
  5. D. Kundu, I. Honma, T. Osawa and H. Komiyama, J. Am. Ceram. Soc., 1994, 77, 1110 CAS.
  6. P. Mazzoldi, F. Caccavale, E. Cattaruzza, A. Boscolo–Boscoletto, R. Bertoncello, A. Glisenti, G. Battaglin and C. Gerardi, Nucl. Instrum. Methods B, 1992, 65, 367 CrossRef.
  7. G. Battaglin, Nucl. Instrum. Methods B, 1996, 116, 102 CrossRef CAS.
  8. R. Bertoncello, F. Trivillin, E. Cattaruzza, P. Mazzoldi, G. W. Arnold, G. Battaglin and M. Catalano, J. Appl. Phys., 1995, 77, 1294 CrossRef CAS.
  9. P. Mazzoldi, G. W. Arnold, G. Battaglin, R. Bertoncello and F. Gonella, Nucl. Instrum. Methods B, 1994, 91, 478 CrossRef CAS.
  10. R. F. Haglund, Jr., L. Yang, R. H. Magruder, C. H. White, R. A. Zuhr, Lena Yang, R. Dorsinville and R. R. Alfano, Nucl. Instrum. Methods B, 1994, 91, 493 CrossRef.
  11. P. Mazzoldi, G. W. Arnold, G. Battaglin, F. Gonella and R. F. Haglund, Jr., J. Nonlinear Opt. Phys. Mater., 1996, 5, 285 CrossRef CAS.
  12. G. W. Arnold, P. Mazzoldi, L. Tramontin, A. Boscolo-Boscoletto and G. Battaglin, Mater. Res. Soc. Symp. Proc., 1993, 279, 285 CAS.
  13. M. P. Seah and G. C. Smith, in Practical Surface Analysis, ed. D. Briggs and M. P. Seah, Wiley, Chichester, 2nd edn., 1990, vol. 1, appendix 1, pp. 543–544 Search PubMed.
  14. N. Matsunami and H. Hosono, Appl. Phys. Lett., 1993, 63, 2050 CrossRef CAS.
  15. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods, 1980, 174, 275 Search PubMed.
  16. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, ed. J. Chastain, Perkin Elmer Corp., Eden Prairie, MN, 1992 Search PubMed.
  17. X-Ray Photoelectron Spectroscopy Database, version 1.0, National Institute of Standards and Technology, Gaithersburg, MD, 1989 Search PubMed.
  18. H. P. Klug and L. E. Alexander, in X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, J. Wiley & Sons, New York, 1974, p. 687 Search PubMed.
  19. J. Neddersen, G. Chumanov and T. M. Cotton, Appl. Spectrosc., 1992, 47, 1959.
  20. G. Mie, Ann. Phys., 1908, 25, 377 CAS.
  21. G. W. Arnold and J. A. Borders, J. Appl. Phys., 1977, 48, 1488 CrossRef CAS.
  22. U. Kreibig and M. Vollmer, in Optical Properties of Metal Clusters, Springer Series in Materials Science, Springer-Verlag, Berlin, Heidelberg, 1995, vol. 25 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.