Semiporous MoS2 obtained by the decomposition of thiomolybdate precursors

(Note: The full text of this document is currently only available in the PDF Version )

Astrid Leist, Sandra Stauf, Sandra Löken, E. Wolfgang Finckh, Silke Lüdtke, Klaus K. Unger, Wolfgang Assenmacher, Werner Mader and Wolfgang Tremel


Abstract

The decomposition of three different ammonium thiomolybdates (NH4)2MoS4xH2O, (NH4)2Mo2S12xH2O, and (NH4)2Mo3S13xH2O (x=1–2) have been studied by TG–DSC under argon. While all three thiomolybdates decompose at around 673 K to yield nearly X-ray amorphous MoS2 , the precursor (NH4)2Mo3S13xH2O does so in a manner distinct from the other two precursors displaying a sharp exothermic peak in the DSC trace. We suggest that the unusual thermal behaviour of (NH4)2Mo3S13xH2O might arise from a topochemical relation between the molecular cluster and 2H-MoS2 as proposed previously. The porosity of the X-ray amorphous MoS2 obtained from the decomposition under vacuum of (NH4)2Mo3S13xH2O is unusually large and the material displays interesting sorption behaviour towards small organic molecules. This X-ray amorphous semiporous modification of MoS2 has been characterized in detail by powder X-ray diffraction, high resolution electron microscopy and from its extended X-ray absorption fine structure. An unusual feature of this material is the presence of bent, open-ended lamellae of MoS2 , contrasting fullerene-like MoS2 which forms closed shells.


References

  1. I. L. Singer, in Fundamentals of Friction: Macroscopic and Microscopic Processes, ed. I. L. Singer and H. M. Pollock, Kluwer, Dordrecht, 1992 Search PubMed.
  2. D. Delmon, Bull. Soc. Chim. Belg., 1995, 104, 173.
  3. Y. Feldman, E. Wasserman, D. J. Srolovitz and R. Tenne, Science, 1995, 267, 222 CrossRef CAS; M. Hershfinkel, L. A. Gheber, V. Volterra, J. L. Hutchison, L. Margulis and R. Tenne, J. Am. Chem. Soc., 1994, 116, 1914 CrossRef CAS.
  4. L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen and R. Tenne, Nature (London), 1997, 387, 791 CrossRef CAS.
  5. J. P. Wilcoxon and G. A. Samara, Phys. Rev. B., 1995, 51, 7299 CrossRef CAS.
  6. W. M. R. Divigalpitiya, R. F. Frindt and S. R. Morrison, Science, 1990, 246, 369; E. Ruiz-Hitzky, R. Jiminez, B. Casal, V. Manriques, A. Santa Ana and G. Gonzalez, Adv. Mater., 1993, 738 CAS; E. Ruiz-Hitzky, Adv. Mater., 1993, 334 CAS; H. Tagaya, T. Hashimoto, M. Karasu, T. Izumi and K. Chiba, Chem. Lett., 1992, 213.
  7. A. Müller, E. Diemann, A. Branding, F. W. Baumann, M. Breysse and M. Vrinat, Appl. Catal., 1990, 62, L13 CrossRef.
  8. T. P. Prasad, E. Diemann and A. Müller, J. Inorg. Nucl. Chem., 1973, 35, 1895 CAS.
  9. A. Müller and E. Diemann, Chimia, 1985, 39, 312.
  10. E. Diemann, A. Müller and P. R. Aymonino, Z. Anorg. Allg. Chem., 1981, 479, 191 CAS.
  11. G. Krüss, Justus Liebigs Ann. Chem., 1884, 225, 6.
  12. A. Müller, R. G. Bhattacharya and B. Pfefferkorn, Chem. Ber., 1979, 112, 778.
  13. A. Müller, S. Sarkar, R. G. Bhattacharya, S. Pohl and M. Dartmann, Angew. Chem., Int. Ed. Engl., 1978, 17, 535 CrossRef.
  14. M. M. J. Treacy, M. W. Deem and J. M. Newsam, Computer code DIFFAX v.1.801, 1990; Proc. R. Soc. London A, 1991, 433, 499 Search PubMed; Ultramicroscopy, 1993, 52, 512 Search PubMed.
  15. J. Rodriguez-Carvajal, in Proc. Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr., Toulouse, France, 1990 Search PubMed.
  16. A. Oberlin, in Chemistry and Physics of Carbon, ed. P. A. Thrower, Marcel Dekker, New York, 1988, pp. 1–143 Search PubMed.
  17. D. Ugarte, Nature (London), 1992, 359, 707 CrossRef CAS.
  18. J. C. Wildervanck and F. Jellinek, Z. Anorg. Allg. Chem., 1964, 328, 309 CrossRef.
  19. A. Michalowicz, Logiciels pour la Chimie, Société Française de Chimie, Paris, 1991, p. 102 Search PubMed.
  20. R. Bissessur, J. Heising, W. Hirpo and M. Kanatzidis, Chem. Mater., 1996, 8, 318 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.