Hydrogen bonded associates in the Bayer process (in concentrated aluminate lyes): the mechanism of gibbsite nucleation

(Note: The full text of this document is currently only available in the PDF Version )

Ágnes Buvári-barcza, Márta Rózsahegyi and Lajos Barcza


Abstract

The highly alkaline aluminate lye, which is produced in the first step of Bayer process, is characterized by low water activity and strong competition for water molecules. The consequence of these effects is that two (or more) negatively charged species can be brought together and stabilized in the form of anionic hydrogen bonded complexes. Depending on temperature, total concentration and aluminate to hydroxide ratio, aluminate–hydroxide as well as aluminate–aluminate associates can be formed. Among the oligomerized aluminates, the cyclic hexamer seems to play a key role, as it contains octahedrally coordinated aluminate ions and is able to form nuclei in further polymerization for the partial precipitation of Al(OH)3 . The interactions have been experimentally investigated using specially developed methods and a detailed computational analysis.


References

  1. T. G. Pearson, The Chemical Background to the Aluminium Industry, Royal Institute of Chemistry, London, 1955 Search PubMed.
  2. S. I. Kuznetsov and V. A. Derevyakin, The Physical Chemistry of Alumina Production in the Bayer Method, Metallurgizdat, Moscow, 1964 Search PubMed.
  3. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, London–New York, 1984, p.273 Search PubMed.
  4. N. Dezelic, N. Dikinski and R. H. Wolf, J. Inorg. Nucl. Chem., 1981, 33, 791 CrossRef.
  5. H. A. Van Straten and P. L. De Bruyn, J. Colloid Interface Sci., 1984, 102, 260 CAS.
  6. V. R. Rothbauer, F. Zigan and H. O'Daniel, Z. Kristallogr., 1967, 125, 317.
  7. H. Saalfield and M. Wedde, Z. Kristallogr., 1974, 139, 129 CAS.
  8. J. Zámbó, Light Metals, 1986, 199 Search PubMed.
  9. J. R. Glastonbury, Chem. Ind. (London), 1969, 121 CAS.
  10. L. G. Sillén, Quart. Rev., 1959, 13, 146 Search PubMed.
  11. R. J. Stol, A. K. Van Helden and P. L. De Bruyn, J. Colloid Interface Sci., 1976, 57, 115 CAS.
  12. C. F. Baes and A. Mesmer, Jr., Hydrolysis of Cations, J. Wiley, New York, 1976 Search PubMed.
  13. Stability Constants of Metal-ion Complexes, Inorganic Ligands, ed. E. Högfeldt, Pergamon, Oxford, 1982 Search PubMed.
  14. Critical Stability Constants, ed. R. M. Smith and E. Martell, Plenum, New York, 1976, vol. 4 Search PubMed.
  15. G. Johansson, Acta Chem. Scand., 1960, 14, 771 CrossRef CAS.
  16. K. F. Jahr and I. Pernoll, Ber. Bunsen-Ges. Phys. Chem., 1965, 69, 221, 226 Search PubMed.
  17. R. F. Scotford and J. R. Glastonbury, Can. J. Chem. Eng., 1972, 50, 754 Search PubMed.
  18. A. S. Russell, J. D. Edwards and C. S. Taylor, J. Metals, 1955, 7, 1223 Search PubMed.
  19. R. C. Plumb and J. W. Swaine, Jr., J. Phys. Chem., 1964, 68, 2054.
  20. L. A. Carriera, V. A. Maroni, J. W. Swaine, Jr. and R. C. Plumb, J. Chem. Phys., 1966, 45, 2216 CrossRef.
  21. J. D. Hem, Adv. Chem. Ser., 1968, 73, 98 Search PubMed.
  22. K. Wefers, Metall. (Berlin), 1967, 21, 422 Search PubMed.
  23. N. I. Eremin, Yu. A. Volokhov and V. E. Mironov, Usp. Khim., 1974, 43, 224 Search PubMed.
  24. G. Johansson, Acta Chem. Scand., 1966, 20, 505 CrossRef CAS.
  25. R. J. Moolenaar, J. G. Evans and L. D. McKeever, J. Phys. Chem., 1970, 74, 3629 CrossRef CAS.
  26. R. J. Hill, G. V. Gibbs and R. C. Peterson, Aust. J. Chem., 1979, 32, 321.
  27. W. Gessner, D. Müller, H. J. Behrens and G. Scheler, Z. Anorg. Allg. Chem., 1981, 486, 193 CrossRef.
  28. D. Müller, W. Gessner, A. Samoson, E. Lipmaa and G. Scheler, J. Chem. Soc., Dalton Trans., 1986, 1277 RSC.
  29. S. F. Dec, G. E. Maciel and J. J. Fitzgerald, J. Am. Chem. Soc., 1990, 112, 9069 CrossRef CAS.
  30. S. M. Bradley, R. A. Kydd and C. A. Fife, Inorg. Chem., 1992, 31, 1181 CrossRef CAS.
  31. J. W. Akitt and W. Gessner, J. Chem. Soc., Dalton Trans., 1984, 147 RSC.
  32. J. W. Akitt, W. Gessner and M. Weinberger, Magn. Reson. Chem., 1988, 26, 1047 CAS.
  33. S. M. Bradley and J. V. Hanna, J. Chem. Soc., Chem. Commun., 1993, 1249 RSC.
  34. A. R. Gerson, J. Ralston and R. St. C. Smart, Colloids Surf. A: Physicochem. Eng. Asp., 1996, 110, 105 CrossRef CAS.
  35. M. Pálfalvi-Rózsahegyi, Á. Buvári, L. Barcza and Z. G. Szabó, Acta Chim. Hung., 1979, 102, 401 CAS.
  36. P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 4th edn., 1990 Search PubMed.
  37. M. Pálfalvi-Rózsahegyi, Z. G. Szabó and L. Barcza, Acta Chim. Hung., 1980, 104, 303 CAS.
  38. L. Barcza and M. Pálfalvi-Rózsahegyi, Mater. Chem. Phys., 1989, 21, 345 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.