31P and 29Si NMR study of sol–gel-synthesized phosphate ceramics

(Note: The full text of this document is currently only available in the PDF Version )

Li-qiong Wang, William D. Samuels, Gregory J. Exarhos, Burtrand I. Lee and Zhicheng Cao


Abstract

31P and 29Si solid-state magic angle spinning (MAS) and liquid-state nuclear magnetic resonance (NMR) techniques have been applied to the study of sol–gel-synthesized phosphate ceramic composites. This study emphasizes the chemistry and structural properties for both sols and gels prepared by directly reacting P2O5 with tetraethoxysilane (TEOS). This new method of formation of both the sols and gels is a drastic improvement in the retention of phosphorus during the formation of the phosphosilicate gels, and it provides a lower temperature route to six-coordinate silicon. Both31P and 29Si liquid-state NMR spectra for sols prepared without water showed the presence of P–O–Si bonds. The 31P NMR spectra for sols prepared with water resembled those for the PO(OH)x(OR)3–xprecursors, while29Si NMR spectra indicated that TEOS had undergone partial hydrolysis and condensation. Hexacoordinated silicon was observed for the first time in gels prepared at low temperature (70 °C). P–Si gels prepared directly by using P2O5 were compared with those using other molecular precursors.


References

  1. T. Woignier, J. Phalippou and J. Zarzycki, J. Non-Cryst. Solids, 1990, 63, 117 CrossRef CAS.
  2. J. Livage, P. Barboux and M. T. Vanderborre, J. Non-Cryst. Solids, 1992, 147, 18.
  3. S. P. Szu, L. C. Klein and M. Greenblatt, J. Non-Cryst. Solids, 1992, 143, 21 CAS.
  4. Y. S. Kim and R. E. Tressler, J. Mater. Sci. 2, 1994, 29, 2531 Search PubMed.
  5. F. Tian, L. Pan, L. X. Wu and F. Wu, J. Non-Cryst. Solids, 1988, 104, 129 CAS.
  6. B. I. Lee, W. D. Samuels, L.-Q. Wang and G. J. Exarhos, J. Mater. Res., 1996, 11, 1 CrossRef.
  7. (a) Z. Cao, B. I. Lee, W. D. Samuels, L.-Q. Wang and G. J. Exarhos, J. Mater. Res., 1997, in press; Search PubMed; (b) B. I. Lee, Z. Cao, W. N. Sisk, J. Hudak, W. D. Samuels and G. J. Exarhos, Mater. Res. Bull., 1997, 32, 1285 CrossRef CAS.
  8. C. Fernandez-Lorenzo, L. Esquivias, P. Barboux, J. Maquet and F. Taulelle, J. Non-Cryst. Solids, 1994, 176, 189 CAS.
  9. Y. Guo, P. Woznicki and A. Barkatt, J. Mater. Res., 1996, 11, 3.
  10. S. Prabakar, K. J. Rao and C. N. R. Rao, J. Mater. Res., 1991, 6, 592 CAS.
  11. E. A. Hayri and M. Greenblatt, J. Non-Cryst. Solids, 1987, 94, 387 CAS.
  12. J. P. Boilot and P. Colomban, J. Mater. Sci. Lett., 1985, 4, 22 CAS.
  13. P. J. Dirken, M. E. Smith and H. J. Whitfield, J. Phys. Chem., 1995, 99, 395 CrossRef CAS.
  14. S. G. Kosinski, D. M. Krol, T. M. Duncan, D. C. Douglass, J. B. Machesney and J. R. Simpson, J. Non-Cryst. Solids, 1988, 105, 45 CAS.
  15. Colloid Chemistry of Silica, ed. H. E. Bergna, American Chemical Society, Adv. Chem. Ser. no. 234 Search PubMed; Wijnen et al.Silica Gels from Aqueous Silicate Solutions, 1994, p. 413 Search PubMed.
  16. M. W. G. Lockyer, D. Holland and R. Dupree, Phys. Chem. Glasses, 1995, 36, 22 Search PubMed.
  17. T. L. Weeding, B. H. de Jong, W. S. Veeman and B. G. Aitken, Nature, 1985, 318, 352 CrossRef CAS.
  18. I. L. Mudrakovskii, V. P. Mastikhin, V. P. Shmachkova and N. S. Kotsarenko, Chem. Phys. Lett., 1985, 120, 424 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.