Li0.44MnO2: an intercalation electrode with a tunnel structure and excellent cyclability

(Note: The full text of this document is currently only available in the PDF Version )

A. Robert Armstrong, Haitao Huang, Richard A. Jennings and Peter G. Bruce


Abstract

Li0.44MnO2 possesses a complex tunnel structure composed of sheets of edge-sharing MnO6 octahedra and columns of edge-sharing MnO5 square pyramids both lying parallel to the c axis of the orthorhombic unit cell (space group Pbam). The sheets and columns corner share thus defining two types of tunnels. The smaller of these contains one Li+ ion site and the larger two pairs of Li+ sites. There are no less than five crystallographically distinct Mn sites. The lithium content of the host has been varied by chemical and electrochemical intercalation/deintercalation over the range LixMnO2 ; 0.25<x<0.63. The associated change in the lithium site occupancies has been determined by a combination of powder neutron diffraction and electrochemical measurements. The structure demonstrates a remarkable ability to cycle lithium with no perceptible loss of capacity when cycled over the range 2.8–3.6 V vs. Li+(1 m)/Li, at 0.5 mA cm–2 corresponding to a capacity of 85–90 mA h g–1 .


References

  1. P. G. Bruce, Philos. Trans. R. Soc. London, Ser. A, 1996, 354, 1577 Search PubMed.
  2. Y. Gao and J. R. Dahn, J. Electrochem. Soc., 1996, 143, 100 CAS.
  3. P. G. Bruce, Chem. Commun., 1997, 1817 RSC.
  4. H. Huang and P. G. Bruce, J. Electrochem. Soc., 1994, 141, L106 CAS.
  5. H. Huang and P. G. Bruce, J. Power Sources, 1995, 54, 52 CrossRef CAS.
  6. M. M. Thackeray, W. I. F. David, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 1983, 18, 461 CrossRef CAS.
  7. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, W. I. F. David, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., 1984, 19, 179 CrossRef CAS.
  8. R. J. Gummow, A. de Kock and M. M. Thackeray, Solid State Ionics, 1994, 69, 59 CrossRef CAS.
  9. J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G. Amatucci and D. Guyomard, J. Electrochem. Soc., 1994, 141, 1421 CAS.
  10. Japan Electronics, March 6th, 1996.
  11. A. R. Armstrong and P. G. Bruce, Nature (London), 1996, 381, 499 CrossRef CAS.
  12. P. G. Bruce, A. R. Armstrong and H. Huang, J. Power Sources, in press Search PubMed.
  13. C. Delmas and F. Capitaine, J. Power Sources, in press Search PubMed.
  14. M. M. Doeff, M. Y. Peng, Y. Ma and L. C. De Jonghe, J. Electrochem. Soc., 1994, 141, L145 CAS.
  15. M. Doeff, T. J. Richardson and L. Kepley, J. Electrochem. Soc., 1996, 143, 2507 CAS.
  16. R. I. Smith, S. Hull and A. R. Armstrong, Mater. Sci. Forum, 1994, 166–169, 251 Search PubMed.
  17. J. C. Matthewman, P. Thompson and P. J. Brown, J. Appl. Crystallogr., 1982, 15, 167 CrossRef CAS.
  18. P. J. Brown and J. C. Matthewman, Rutherford Appleton Laboratory Report, 1987, RAL-87–010.
  19. V. F. Sears, Neutron News, 1992, 3, 26 Search PubMed.
  20. M. M. Thackeray, A. de Kock, M. H. Roussouw, D. Liles, R. Bittihn and D. Hoge, J. Electrochem. Soc., 1992, 139, 363 CAS.
  21. W. G. Mumme, Acta Crystallogr., Sect. B, 1968, 24, 1114 CrossRef CAS.
  22. J.-P. Parant, R. Olazcuaga, M. DeValette, C. Fouassier and P. Hagenmuller, J. Solid State Chem., 1971, 3, 1 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.