Structural–dynamical relationship in silica PEG hybrid gels

(Note: The full text of this document is currently only available in the PDF Version )

Philippe Lesot, Séverin Chapuis, Jean Pierre Bayle, Jacques Rault, Eric Lafontaine, Antonio Campero and Patrick Judeinstein


Abstract

Hybrid organic–inorganic materials have been prepared from mixtures of tetraethoxysilane and poly(ethylene glycol) (PEG) of low molecular mass. These materials are diphasic systems in which silica aggregates, controlling the mechanical properties, are wrapped around by the polymer phase. Strong correlations between the synthesis scheme, the structure and the properties of these materials are evidenced. Solid-state29Si NMR points out the change of the silica morphology with the nature of the catalyst (acidic, [HCl] or nucleophilic, [NH4F]). In addition, these changes induce strong variations of the thermal properties of the PEG phase. The structural and dynamical inhomogeneities of the PEG are analyzed using 13C NMR and EPR spectroscopies. Near the SiO2 surfaces, hydrogen bonding hinders the motion of the PEG chains, while the bulk of the polymeric phase possesses the same properties as the polymer melt. Thermal analyses (DSC) disclose the difference between materials prepared with the various catalysts which are related to the degree of interpenetration between the two phases.


References

  1. (a) See, for example: Better Ceramics Through Chemistry VI, ed. A. K. Cheetham, C. J. Brinker and M. L. McCartney, Mater. Res. Soc. Symp. Proc., 1994, 346 Search PubMed; (b) Better Ceramics Through Chemistry VII, ed. A. K. Cheetham, C. J. Brinker and M. L. McCartney, Mater. Res. Soc. Symp. Proc., 1996, 435 Search PubMed; (c) Hybrid Organic–Inorganic Materials, ed. C. Sanchez and F. Ribot, New J. Chem., 1994, 18 Search PubMed; (d) Hybrid Organic–Inorganic Composites, ed. J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, ACS Symp. Ser., 1995, 585 Search PubMed.
  2. (a) C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007 Search PubMed; (b) P. Judeinstein and C. Sanchez, J. Mater. Chem., 1996, 6, 511 RSC.
  3. (a) B. M. Novak, Adv. Mater., 1993, 5, 422 CrossRef CAS; (b) C. Sanchez and F. Ribot, New J. Chem., 1994, 18, 1007 Search PubMed.
  4. (a) D. Ravaine, A. Seminel, Y. Charbouillot and M. Vincens, J. Non-Cryst. Solids, 1986, 82, 210 CAS; (b) S. Kohjiya, K. Ochiai and S. Yamashita, Polymer Gels, ed. D. DeRossi, Plenum Press, New York, 1991, p. 77 Search PubMed; (c) D. E. Rodriguez, A. B. Brennan, C. Betrabet, B. Wang and G. L. Wilkes, Chem. Mater., 1992, 4, 1437 CrossRef CAS.
  5. P. Judeinstein and H. Schmidt, J. Sol–Gel Sci. Technol., 1994, 3, 189 Search PubMed.
  6. P. Judeinstein, J. Titman, M. Stamm and H. Schmidt, Chem. Mater., 1994, 6, 127 CrossRef CAS.
  7. J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 1988, 18, 259 CrossRef CAS.
  8. (a) G. Engelhardt, High-Resolution Solid-State NMR of Silica and Zeolites, Wiley, New York, 1987, p. 76 Search PubMed; (b) R. K. Harris and R. H. Newman, J. Chem. Soc., Faraday Trans., 1977, 73, 1204 Search PubMed.
  9. N. Zumbulyadis and J. M. O'Reilly, Macromolecules, 1991, 24, 5294 CrossRef CAS.
  10. M. Laridjani, E. Lafontaine and P. Judeinstein, unpublished work.
  11. P. Judeinstein, P. W. Oliveira, J. P. Bayle and J. Courtieu, J. Chim. Phys., 1994, 91, 1583 CAS.
  12. EPRLL software package developed by D. J. Schneider and J. H. Freed, Biological Magnetic Resonance, ed. L. J. Berliner and J. Reuben, Plenum, New York, 1989 Search PubMed.
  13. H. Hommel, Adv. Colloid Interface Sci., 1995, 54, 209 CrossRef CAS.
  14. T. Marinovic, S. Valic, M. Andreis and Z. Veksli, Polymer, 1994, 32, 2519 CrossRef.
  15. M. E. Brik, J. P. Bayle, J. Titman and P. Judeinstein, J. Polym. Sci., Part B: Polym. Phys., 1996, 34, 2533 CrossRef CAS.
  16. K. L. Walther, A. Wokaun and A. Baiker, Mol. Phys., 1990, 71, 769 CAS.
  17. R. J. P. Corriu and D. Leclercq, Angew. Chem., Int. Ed. Engl., 1996, 35, 1421 CrossRef CAS.
  18. I. A. David and G. W. Scherer, Chem. Mater., 1995, 7, 1957 CrossRef CAS.
  19. D. W. Sindorf and G. E. Maciel, J. Phys. Chem., 1982, 86, 5208 CrossRef CAS.
  20. (a) See, for example: Molecular Dynamics in Restricted Geometries, ed. J. Klafter and J. M. Drake, Wiley, New York, 1989 Search PubMed; (b) Polymers at Interfaces, ed. G. J. Fleer, M. A. Cohen Stuart, T. Cosgrove and B. Vincent, Chapman & Hall, London, 1993 Search PubMed.
  21. S. Xu, J.-P. Korb and J. Jonas, Mater. Res. Soc. Symp. Proc., 1994, 346, 925 CAS.
  22. C. P. Grey and K. G. Sharp, Mater. Res. Soc. Symp. Proc., 1996, 435, 179 CAS.
  23. U. M. Biermann, W. Mikosch, T. Dorfmüller and W. Eimer, J. Phys. Chem., 1996, 100, 1705 CrossRef CAS.
  24. S. Stapf and R. Kimmich, Macromolecules, 1996, 29, 1638 CrossRef CAS.
  25. See, for example, H. Van Krevaleen, Properties of Polymers, Elsevier, Amsterdam, 1985 Search PubMed.
  26. E. W. Hansen, M. Stöcker and R. Schmidt, J. Phys. Chem., 1996, 100, 2195 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.