Preparation and characterization of metal complexes with an extended TTF dithiolato ligand, bis(propylenedithiotetrathiafulvalenedithiolato)-nickelate and -cuprate

(Note: The full text of this document is currently only available in the PDF Version )

Mieko Kumasaki, Hisashi Tanaka and Akiko Kobayashi


Abstract

Novel monoanionic nickel and dianionic copper complexes with the extended TTF dithiolato ligand, propylenedithiotetrathiafulvalenedithiolate [ptdt2=(S8C9H6)2– ], have been synthesized. Characterization of monoanionic tetraphenylphosphonium and tetramethylammonium salts of Ni(ptdt)2 and the dianionic tetraphenylphosphonium salt of Cu(ptdt)22– have been performed, using cyclic voltammetry, electrical resistivity measurements, magnetic susceptibility measurements and X-ray crystal structure determination. The geometries around the Ni atoms are almost square planar. In both Ni complexes, one of the extended ligands of Ni(ptdt)2 is overlapping with that of the adjacent anion separated by about half of the unit of the molecule, forming a one-dimensional chain. The adjacent chains are connected by transverse short S‥S contacts. Cu(ptdt)22– has a distorted tetrahedral geometry around the Cu atom and the dihedral angle between the planes of the dithiolato ligand is 54.2 °. The crystal structures of Ni(ptdt)2 and Cu(ptdt)22– complexes show the possibility of novel 2D or 3D intermolecular contacts through ptdt ligands. The complex [Me4N][Ni(ptdt)2 ]·Me2CO is a semiconductor with a room temperature conductivity of 1.4×10–3 S cm–1 and activation energy of 9.9×10–2 eV.


References

  1. Y. Misaki, H. Nishikawa, K. Kawakami, S. Koyanagi, T. Yamabe and M. Shiro, Chem. Lett., 1992, 2321 CAS .
  2. N. L. Narvor, N. Robertson, T. Weyland, J. D. Kilburn, A. E. Underhill, M. Webster, N. Svenstrup and J. Becker, Chem. Commun., 1996, 1363 RSC ; N. L. Narvor, N. Robertson, E. Wallace, J. D. Kilburn, A. E. Underhill, P. N. Bartlett and M. Webster, J. Chem. Soc., Dalton. Trans., 1996, 823 RSC .
  3. M. Nakano, A. Kuroda, T. Maikawa and G. Matsubayashi, Mol. Cryst. Liq. Cryst., 1996, 284, 301 Search PubMed .
  4. C. Gemmell, G. C. Janairo, J. D. Kilburn, H. Ueck and A. E. Underhill, J. Chem. Soc., Perkin Trans., 1995, 2715 Search PubMed .
  5. Y. Misaki, H. Nishikawa, K. Kawakami, S. Koyanagi, T. Yamabe and M. Shiro, Chem. Lett., 1992, 2321 CAS .
  6. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. IV Search PubMed .
  7. TeXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, version 1. 7–2a, 1995 .
  8. C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory; Oak Ridge, TN, 1976 .
  9. L. C. Porter, A. M. Kini and J. M. Williams, Acta Crystallogr., Sect. C, 1987, 43, 998 CrossRef .
  10. G. Matsubayashi, K. Takahashi and T. Takano, J. Chem. Soc., Dalton Trans., 1988, 967 RSC .
  11. Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie II/11, Springer-Verlag, 1981 Search PubMed .
  12. A. Kobayashi, T. Naito and H. Kobayashi, Phys. Rev. B., 1995, 51, 3198 CrossRef CAS .
  13. R. Kato, H. Kobayashi, H. Kim, Y. Sasaki, T. Mori and H. Inokuchi, Chem. Lett., 1988, 865 CAS .
  14. A. Kobayashi and H. Kobayashi, Molecular Metals and Superconductors Based on Transition Metal Complexes, in Handbook of Organic ConductiveMolecules and Polymers, ed. H. S. Nalwa, John Wiley & Sons, Ltd., 1997, vol 1, p. 276 Search PubMed .
  15. A. Kobayashi, A. Sato, T. Naito and H. Kobayashi, Mol. Cryst. Liq. Cryst., 1996, 284, 85 Search PubMed .
  16. H. Kobayashi, A. Miyamoto, R. Kato, F. Saka, A. Kobayashi, Y. Yamakita, Y. Furukawa, M. Tasumi and T. Watanabe, Phys. Rev. B: Condens. Matter, 1993, 47, 3500 Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.