Layered polysilane: thermolysis and photoluminescence

(Note: The full text of this document is currently only available in the PDF Version )

J. He, J. S. Tse, D. D. Klug and K. F. Preston


Abstract

Layered polysilane (Si6H6) and its thermolysis have been studied using FTIR spectroscopy, thermogravimetry/differential thermal analysis, mass spectrometry, electron paramagnetic resonance, Si K-edge absorption and photoluminescence spectroscopy. It is found that cross-linking between (–Si6H6–)nlayers occurs through dehydrocoupling reactions when the layered polysilane is heated under vacuum or an inert atmosphere at temperatures of 100–200 °C. Structural changes in the silicon network are evident during thermolysis: the layered structure of polysilane starts to collapse at 200 °C and is transformed to amorphous hydrogenated silicon and subsequently to crystalline silicon (c-Si) at temperatures higher than 450 °C. This process is accompanied by the evolution of H2 and SiH4 gases. The resulting layered polysilane exhibits strong room temperature photoluminescence at 560 nm (ca. 2.2 eV) and a blue-shift of Si K-edge absorption (0.6 eV) relative to c-Si. Annealing the layered polysilane results in red-shifts of luminescence peak energy with the increase of annealing temperature, consistent with the trend observed in the Si K-edge absorption measurement. These results are interpreted in terms of the growth of silicon network dimension during the thermolysis. The reduction in visible luminescence intensity for the annealed product at 300 °C (or higher) is further attributed to the creation of defects, e.g., silicon dangling bonds ( g=2.0047) which provide pathways for non-radiative recombination. The relationship between layered polysilane (as well as its annealed products) and porous Si is discussed.


References

  1. (a) L. T. Canham, Appl. Phys. Lett., 1990, 57, 1046 CrossRef CAS; (b) V. Lehmann and U. Gosele, Appl. Phys. Lett., 1991, 58, 856 CrossRef CAS.
  2. P. McCord, S.-L. Yau and A. J. Bard, Science, 1992, 257, 68 CAS.
  3. (a) M. Stutzmann, J. Weber, M. S. Brandt, H. D. Fuchs, M. Rosenbauer, P. Deak, A. Hopner and A. Breitschwerdt, Adv. Solid State Phys., 1992, 32, 179 Search PubMed; (b) P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber and M. S. Brandt, Phys. Rev. Lett., 1992, 69, 2531 CrossRef CAS; (c) M. Stutzmann, M. S. Brandt, M. Rosenbauer, J. Weber, P. Deak and H. D. Fuchs, Phys. Rev. B, 1993, 47, 4806 CrossRef CAS; (d) H. D. Fuchs, M. Stutzmann, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerdt, P. Deak and M. Cardona, Phys. Rev. B, 1993, 48, 8172 CrossRef CAS.
  4. C. Zybill and V. Petrova-Koch, Angew. Chem., Int. Ed. Engl., 1993, 32, 845 CrossRef.
  5. J. R. Dahn, B. M. Way, E. W. Fuller and J. S. Tse, Phys. Rev. B, 1993, 47, 17872 CrossRef CAS.
  6. R. T. Collins, P. M. Fauchet and M. A. Tischler, Phys. Today, 1997, Jan. 24 and references cited therein Search PubMed.
  7. (a) H. Kautsky, Kolloid Z., 1943, 102, 1 Search PubMed; (b) F. Kenny and R. B. Kurtz, Anal. Chem., 1950, 22, 693 CrossRef CAS.
  8. (a) K. H. Janzon, H. Schafer and A. Weiss, Z. Anorg. Allg. Chem., 1970, 372, 87 CAS; (b) S. Fahy and D. R. Hamann, Phys. Rev. B, 1990, 41, 7587 CrossRef CAS.
  9. (a) H. Kautsky, W. Vogell and F. Oeters, Z. Naturforsch, Teil B, 1955, 10, 597 Search PubMed; (b) E. Hengge, Top. Curr. Chem., 1974, 51, 95.
  10. A. Weiss, G. Beil and H. Mayer, Z. Naturforsch., Teil B, 1980, 34, 25 Search PubMed.
  11. I. Hirabayashi, K. Morigaki and S. Yamanaka, J. Phys. Soc. Jpn., 1983, 52, 671 Search PubMed.
  12. J. S. Tse, J. R. Dahn and F. Buda, J. Phys. Chem., 1995, 99, 1896 CrossRef CAS.
  13. (a) B. X. Yang, F. H. Middleton, B. G. Olsson, G. M. Bancroft, J. M. Chen, T. K. Sham, K. Tan and D. J. Wallace, Nucl. Instrum. Methods A, 1992, 316, 422 CrossRef; (b) M. Kasrai, W. N. Lennard, R. W. Brunner, G. M. Bancroft, J. A. Bardwell and K. H. Tan, Appl. Surf. Sci., 1996, 99, 303 CrossRef CAS.
  14. P. Gupta, V. L. Colvin and S. M. George, Phys. Rev. B, 1988, 37, 8234 CrossRef CAS.
  15. Y. J. Chabal, in Hydrogen in Semiconductors: Bulk and Surface Properties, ed. M. Stutzmann and J. Chevallier, North-Holland, Amsterdam, 1991 Search PubMed.
  16. (a) M. Stavola, Appl. Phys. Lett., 1984, 44, 514 CrossRef CAS; (b) B. Pajot, H. J. Stein, B. Cales and C. Naud, J. Electrochem. Soc., 1985, 132, 3034 CAS.
  17. S. M. Hu and D. R. Kerr, J. Electrochem. Soc., 1967, 114, 414 CAS.
  18. H. Kautsky and L. Haase, Chem. Ber., 1953, 86, 1226 CAS.
  19. E. Henge and G. Scheffler, Monatsh. Chem., 1964, 95, 1450.
  20. The layer spacing for layered polysilane [Si6H6]n is about 5.40 Å and the Si–H bond length in this compound is about 1.50 Å(see ref. 5). Therefore, the interlayer distance between Si–H⋯⋯⋯Si–H is estimated to be 2.0 Å.
  21. E. M. Tebben and M. A. Ring, Inorg. Chem., 1969, 8, 1787 CrossRef CAS.
  22. (a) I. M. T. Davidson and A. V. Howard, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 69 RSC; (b) C. H. Haas and M. A. Ring, Inorg. Chem., 1975, 14, 2253 CrossRef CAS; (c) A. J. Vanderwielen, M. A. Ring and H. E. O'Neal, J. Am. Chem. Soc., 1975, 97, 993 CrossRef CAS.
  23. A. J. McKinley, T. Karatsu, G. M. Wallraf, R. D. Miller, R. Sooriyakumaran and J. Michl, Organometallics, 1988, 7, 2567 CrossRef CAS.
  24. H. Ubara, T. Imura, A. Hiraki, I. Hirabayashi and K. Morigaki, J. Non-Cryst. Solids, 1983, 59 & 60, 641 CAS.
  25. S. Nonomura, S. Hattori, H. Hayashi, T. Itoh and S. Nitta, J. Non-Cryst. Solids, 1989, 114, 729 CAS.
  26. J. R. Dahn, B. M. Way, E. W. Fuller, W. J. Weydanz, J. S. Tse, D. D. Klug, T. Van Buuren and T. Tiedje, J. Appl. Phys., 1994, 75, 1946 CrossRef CAS.
  27. F. C. Brown, R. Z. Bachrach and M. Skibowski, Phys. Rev. B, 1977, 15, 4781 CrossRef CAS.
  28. K. Morigaki, I. Hirabayashi, M. Nakayama, S. Nitta and K. Shimakawa, Solid State Commun., 1980, 33, 851 CrossRef CAS.
  29. W. L. Wilson and T. W. Weidman, J. Phys. Chem., 1991, 95, 4568 CrossRef CAS.
  30. S. Kyushin, H. Matsumoto, Y. Kanemitsu and M. Goto, J. Phys. Soc. Jpn., 1994, 63, Suppl. B, pp. 46 Search PubMed.
  31. J. Michl, J. W. Downing, T. Karatsu, A. J. McKinley, G. Poggi, G. M. Wallraff, R. Sooriyakumaran and R. Miller, Pure Appl. Chem., 1988, 60, 959 CAS.
  32. N. Matsumoto, K. Takeda, H. Teramae and M. Fujino, in Silicon-Based Polymer Science. A Comprehensive Resource; Adv. Chem. Ser. 224, ed. J. M. Zeigler and F. W. Fearon, American Chemical Society, Washington, DC, 1990, p. 515 Search PubMed.
  33. (a) L. E. Brus, P. F. Szajowski, W. L. Wilson, T. D. Harris, S. Schuppler and P. H. Citrin, J. Am. Chem. Soc., 1995, 117, 2915 CrossRef CAS; (b) J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain and R. M. Macfarlane, Phys. Rev. B, 1992, 45, 14 171 CrossRef CAS.
  34. D. J. Wolford, J. A. Reimer and B. A. Scott, Appl. Phys. Lett., 1983, 42, 369 CrossRef CAS.
  35. (a) S. M. Prokes, O. J. Glembocki, V. M. Bermudez and R. Kaplan, Phys. Rev. B, 1992, 45, 13788 CrossRef CAS; (b) M. B. Robinson, A. C. Dillon, D. R. Haynes and S. M. George, Appl. Phys. Lett., 1992, 61, 1414 CrossRef CAS.
  36. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y.-H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman and P. H. Citrin, Phys. Rev. B, 1995, 52, 4910 CrossRef CAS.
  37. S. Eisebitt, S. N. Patitsas, J. Luning, J.-E. Rubensson, T. Tiedje, T. van Buuren and W. Eberhardt, Europhys. Lett., 1997, 37, 133 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.