Syntheses of mesoporous zirconia with anionic surfactants

(Note: The full text of this document is currently only available in the PDF Version )

G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov and J. J. Fripiat


Abstract

Synthesis of mesoporous zirconia has been performed by slowly hydrolyzing zirconium propoxide in the presence of anionic surfactants: dodecyl phosphate or sulfate (P12 and Sf12) and hexadecyl sulfonate (So16). t-Plot surface areas >400 m2 g–1 and diffraction lines corresponding to spacings near 45 Å were measured for solids outgassed at 140–150 °C. This treatment does not remove the surfactant. After calcination in air at 500 °C and combustion of the surfactant the spacing increases to ca. 70 Å and the mesoporous volume is reduced by a factor of about 2, whereas the pore wall material crystallizes in the tetragonal phase. A schematic model in which the surfactant is a scaffold component is suggested in order to explain these results. It is very different from the templating mechanisms reported for zirconia by others. The high resolution electron microscopic study reveals the presence of a disorganized network of polygonal pores in the solids obtained through the mediation of surfactant. It is suggested that the chemistry of the hydrolysis solution is instrumental in the organization of the pore structure and in determining the thickness of the walls. In agreement with others, the fixation of PO4 or SO4 in the walls may help to preserve the porous structure.


References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature (London), 1992, 359, 710 CrossRef CAS.
  2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 116, 10 836.
  3. D. H. Everett, IUPAC, Division of Physical Chemistry Manual of Symbols and Terminology for Physicochemical Quantities and Units, App. II, Part 1, Butterworths, London, 1971; mesopores have pore widths in the range of 2–50 nm Search PubMed.
  4. Q. Huo, D. L. Margoles, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Schmelka, F. Schüth and G. D. Stucky, Chem. Mater., 1996, 6, 1176.
  5. P. T. Tanev, M. Chibwe and T. J. Pinnavaia, Nature (London), 1996, 368, 321 CrossRef.
  6. S. A. Bagshaw, E. Prouzet and T. J. Pinnavaia, Science, 1995, 269, 1242 CrossRef.
  7. D. M. Antonelli and J. Y. Ying, Chem. Mater., 1996, 8, 874 CrossRef CAS.
  8. D. M. Antonelli and J. Y. Ying, Angew. Chem., Int. Ed. Engl., 1995, 34, 2014 CrossRef CAS.
  9. N. K. Raman, M. T. Anderson and C. F. Brinker, Chem. Mater., 1996, 8, 1682 CrossRef CAS.
  10. M. J. Hudson and J. A. Knowles, J. Chem. Soc., Chem. Commun., 1995, 2083 RSC.
  11. F. Schüth, Ber. Bunsen-Ges. Phys. Chem., 1995, 99, 1306.
  12. V. Ciesla, S. Schacht, G. D. Stucky, K. K. Unger and F. Schüth, Angew. Chem., Int. Ed. Engl., 1996, 35, 541 CrossRef CAS.
  13. J. S. Reddy and A. Sayari, Catal. Lett., 1996, 38, 219 CrossRef CAS.
  14. Yin-Yan Huang, T. J. McCarthy and W. M. H. Sachtler, Appl. Catal. A.: General, 1996, 148, 135 CrossRef CAS.
  15. P. T. Tanev and T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068 CrossRef CAS.
  16. R. G. Garvie, J. Phys. Chem., 1978, 82, 219 NB: By analogy with others, the PXRD shown in Fig. 6A is assigned to the tetragonal phase. However, since no Rietveld analysis has been performed, confusion with the cubic phase is possible.
  17. (a) A. Chatterjee, S. K. Pradhan, A. Dakka, M. De and D. Chakravorthy, J. Mater. Res., 1996, 9, 263; (b) C. R. Aita, M. D. Wiggins, R. Whig, C. M. Scanlan and M. Gajdardziska-Josifovska, J. Appl. Phys., 1994, 79, 1176 CrossRef CAS.
  18. M. Gajdardziska-Josifovska and C. R. Aita, J. Appl. Phys., 1994, 79, 1315 CrossRef.
  19. G. Pacheco, E. Zhao, A. Garcia, A. Sklyarov and J. J. Fripiat, Chem. Commun., 1997, 491 RSC.
  20. G. Larsen, E. Lotero, M. Nabity, L. M. Petkovic and D. S. Shobe, J. Catal., 1996, 164, 246 CrossRef CAS.
  21. E. P. Barrett, L. G. Joyner and P. H. Halenda, J. Am. Chem. Soc., 1951, 13, 573.
  22. S. J. Gregg and K. S. W. Singh, Adsorption, Surface Area and Porosity, Academic Press, New York, 1982 Search PubMed.
  23. H. Van Damme, P. Levitz, J. J. Fripiat, J. F. Alcover, L. Gatineau and F. Bergaya, Physics of Finely Divided Matter, ed. N. Boccara and M. Daoud, Springer Verlag, New York, 1986, p. 24 Search PubMedAggregation of thin platelets: J. F. Lambert, Z.-Q. Deng, J. B. d'Espinose and J. J. Fripiat, J. Colloid Interface Sci., 1989, 132, 336 Search PubMed.
  24. Handbook of Chemistry and Physics, ed. R. C. Weast, The Chemical Rubber Co., Boca Raton, FL, 52nd edn., 1972, p. B156 Search PubMed.
  25. Q. Huo, J. Feng, F. Schüth and G. D. Stucky, Chem. Mater., 1991, 9, 14 CrossRef CAS.
  26. G. Horvath and K. J. J. Kawazoe, J. Chem. Eng. Jpn., 1983, 16, 470 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.