Azulene-substituted TTF derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Hiroshi M. Yamamoto, Jun-ichi Yamaura and Reizo Kato


Abstract

In order to examine Little’s model for organic superconductors, several azulene-substituted TTF derivatives were synthesized. Measurements of the oxidation potentials using cyclic voltammetry (CV) provide their donor abilities. The molecular structure of AET (azulenoethylenedithiotetrathiafulvalene) was determined by X-ray analysis. Cation radical salts of synthesized donors with BF4 , ClO4 , PF6 , AsF6 and [Pt(dmit)2 ]n(dmit=C3S52–=2-thioxo-1,3-dithiole-4,5-dithiolate) were prepared by galvanostatic electrolyses. Temperature-dependent electrical resistances indicate that these salts are all semiconductive. The crystal structure of (AET)2 [Pt(dmit)2 ] was determined by X-ray analysis and its electronic structure is discussed.


References

  1. K. Kagoshima, H. Anzai, K. Kajimura and T. Ishiguro, J. Phys. Soc. Jpn., 1975, 39, 1143 Search PubMed; F. Denoyer, F. Comès, A. F. Garito and A. J. Heeger, Phys. Rev. Lett., 1975, 35, 445 CrossRef CAS.
  2. J. F. Kwak, J. E. Schirber, R. L. Greene and E. M. Engler, Phys. Rev. Lett., 1981, 46, 1296 CrossRef CAS.
  3. J. W. Bray, H. R. Hart, Jr., L. V. Interrante, I. S. Jacobs, J. S. Kasper, G. D. Watkins, S. H. Wei and J. C. Bonner, Phys. Rev. Lett., 1975, 35, 744 CrossRef CAS.
  4. D. Jerome, A. Mazaud, M. Ribault and K. Bechgaard, J. Phys. Lett. (Paris), 1980, 41, 95 Search PubMed.
  5. J. Wosnitza, Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors, Springer Tracts in Modern Physics vol. 134, Springer, Berlin, 1996 Search PubMed.
  6. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini and M. H. Whangbo, Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties and Theory, Prentice Hall, Englewood Cliffs, NJ, 1992 Search PubMed.
  7. Organic Superconductivity, ed. V. Z. Kresin and W. A. Little, Plenum Press, New York, 1990 Search PubMed.
  8. W. A. Little, Phys. Rev., 1964, 134, A1416 Search PubMed.
  9. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev., 1957, 108, 1175 CrossRef CAS.
  10. D. M. Lemal and G. D. Goldman, J. Chem. Educ., 1988, 65, 923 CAS.
  11. G. W. Wheland and D. E. Mann, J. Chem. Phys., 1949, 17, 264 CAS; A. G. Anderson and B. M. Steckler, J. Am. Chem. Soc., 1959, 81, 4941 CrossRef CAS.
  12. R. M. Hochstrasser and L. J. Noe, J. Chem. Phys., 1969, 50, 1684 CAS.
  13. J. M. Robertson, H. M. M. Shearer, G. A. Sim and D. G. Watson, Acta Crystallogr., 1962, 15, 1 CrossRef CAS.
  14. J. Brunken, Chem. Ber., 1960, 93, 2572 CAS; E. W. Thulstrup, P. L. Case and J. Michl, Chem. Phys., 1974, 6, 410 CrossRef CAS.
  15. H. Kobayashi, A. Kobayashi, Y. Sasaki and G. Saito, Bull. Chem. Soc. Jpn., 1986, 59, 301 CAS.
  16. H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito and H. Inokuchi, Chem. Lett., 1984, 183 CAS.
  17. L. Valade, J. P. Legros, M. Bousseau, P. Cassoux, M. Garbauskas and L. V. Interrante, J. Chem. Soc., Dalton Trans., 1985, 783 RSC; G. N. Schrauzer, Acc. Chem. Res., 1969, 2, 72 CrossRef CAS.
  18. M. Bousseau, L. Valade, J. P. Legros, P. Cassoux, M. Garbauskas and L. V. Interrante, J. Am. Chem. Soc., 1986, 108, 1908 CrossRef CAS.
  19. H. Kobayashi, R. Kato, A. Kobayashi and Y. Sasaki, Chem. Lett., 1985, 191 CAS.
  20. S. E. Reiter, L. C. Dunn and K. N. Houk, J. Am. Chem. Soc., 1977, 99, 4199 CrossRef CAS.
  21. N. Svensrup and J. Becher, Synthesis, 1995, 215 CrossRef CAS.
  22. R. Kato, H. Kobayashi and A. Kobayashi, Synth. Met., 1991, 41–43, 2093 CrossRef CAS.
  23. A. E. Underhill, I. Hawkins, S. Edge, S. B. Wilkes, K. S. Varma, A. Kobayashi and H. Kobayashi, Synth. Met., 1993, 55–57, 1914 CrossRef.
  24. T. Imakubo, PhD Thesis, University of Tokyo, 1996.
  25. R. H. Summerville and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 7240 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.